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Abstract

In this paper we discuss theoretical properties of the C-trace pseudospectrum for an
element in the matrix algebra. We also make several observations on the C-trace pseu-
dospectrum.
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Resumen

En este articulo discutimos las propiedades tedricas del pseudoespectro de C-traza para
un elemento en el dlgebra matricial. También hacemos varias observaciones sobre el pseudo-
espectro de C-trazas.

Palabras y frases clave: Pseudoespectro, condicién pseudoespectro, pseudoespectro de
traza.

1 Introduction

Let M, (C) (M,(R)) denote the algebra of all n x n complex (real) matrices and by U, (C) the
group of all unitary matrices in M,,(C). I denotes the n x n identity matrix and the conjugate
transpose of T is denoted by T*. Let T' € M,,(C), then the eigenvalues of the matrix T is denoted
by o(T') and is defined as

o(T) = {)\ €C: M —T is not invertible},

and its spectral radius by
r(T) = sup {|)\\ NS O'(T)}.
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Now, let A € C and
Sn M —T)<...<s8o(AT=T) <sy(M[-T)

be the singular values of the matrix Al — T where s1(A — T') is the smallest and s, (A — T
is largest singular values of the matrix. For an n x n complex matrix 7" and a non-negative
real number e, the pseudospectrum of the matrix 7" is defined as the following closed set in the
complex plane

UE(T):{)\E(C: sn()\I—T)SE}.

Let T € M,(C) and 0 < € < 1. The condition pseudospectrum of the matrix T is denoted
by Y. (T) and is defined as

ngy:{Aec:%QI—T)gngJ_T&.

For more information on various details on the above concepts, properties and applications
of pseudospectrum [1, 7], condition spectrum [2, 3] and the interested reader may consult the
remarkable books [5, 6]. In [4], A. Ammar, A. Jeribi and K. Mahfoudhi defined the notion of
trace pseudospectrum for an element in the matrix algebra M,,(C), for every T' € M,,(C), A € C,
and € > 0 by

Tr(T) = {Ae C: [Tx(\] = T)| < &},
where Tr(-) denotes the trace of a matrix.

In this paper, we are interested in another generalization of eigenvalues called C-trace pseu-
dospectrum for an element in the matrix algebra to give more information about matrix T'. Let
C e M,(C), U €U, (C), A € C and € > 0. Then, the C-trace pseudospectrum of T € M,,(C) is
denoted by Tr%(T) and is defined as

TS (T) = {A € C: |Te(CUN — T)U*)| < }.
The C-trace pseudoresolvent of T is denoted by Tr®p_(T") and is defined as
Tt (T) = {X € C: |Te(CUN - T)U*)| > ¢}
while the C-trace pseudospectral radius of T is defined as
Trr9(T) := sup {|)\| tAE TrS(T)}.

Remark 1.1. Let T,C € M,(C) and U € U,(C). Then, for C = U = U* = I, the C-trace
pseudospectrum coincides with the trace pseudospectrum, i.e., TrEC(T) =Tr (7).

The C-trace pseudospectrum of a matrix may be used to draw surprisingly strong conclusions
about the spectrum and the combinatorial structure of a matrix. In this paper, we will develop
some results on the C-trace pseudospectrum for an element in the matrix algebra, which directly
relate its shape to intrinsic properties of the matrix, and thus provide means of detecting such
properties.
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2 C-trace pseudospectrum.

We begin by a simple example in which the C-trace pseudospectrum can be obtained ana-
lytically:

Example 2.1. Let € > 0 and consider the matrices

T= ( g g ) € My(C), C= ( %1 gi ) € M(C)
and "
U= ( IR ) € Uy(C)

where, a, 8,7, a1, 1 and 71 € C. Now, we compute that

e[ e —ai(A=8) YA —a)
CUN - T)U* = ( e A ) .

Thus
T(T) = {AeC:|—yne ™ —a(A=B)+ /(A - )| <e}
= {(AeC:|hml=la(A=B) = [/i(A - a)l| <&}
Consequently, v = 0 (y1 = 0) if and only if
T (T) = {A € C: Jar(A = B)| + [B1(A — a)| <&}

If vy =0, a=p and ay = p1, then

T(T) = NeC: |\ —a <E}.

The following properties of the C-trace pseudospectrum are easy to check from the definition
of the C-trace pseudospectrum.

Theorem 2.1. Let T,C € M, (C) and € > 0. Then,

(1) T§(T) = () TeE(T).

e>0
(2) If 0 < &1 < &3, then TS, (T) C TrE,(T).

(3) TeS(T) is a non-empty compact subset of C.

(4) If a € C and B € C\{0}. Then, TeC (BT + ol) = ﬂTr% (T) + a.

(5) Tré(al) = {) € C: [Tx(O)||A — a| <&} for all \,a € C.

(6) TeC(UTU*) = TeS(T), for all unitary (resp. anti-unitary) U on M, (C).
(1) Tl (1) = (7).
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Proof. The first two items, (6) and (7) can be immediately checked from the definitions of C-trace
pseudospectrum, so we only include the proof of item (3), (4) and (5).

(3) Using the continuity from C to [0, co[ of the map
A= |Tr(CUN - T)U™)|,

we get that Trg(T) is a compact set in the complex plane containing the eigenvalues of T

(4) For C € M,,(C) and U € U, (C), we have

(BT +al) = {A€C:|Te(CUN — BT — al)U")| e}

{ <
- pecutalenisene) <
|

U
(CU( iy T)U*>

AeC:

Then,/\ETrg(ﬁT—ﬁ—aI).Hence 5 eTrs( ). Thus, /\EﬁTrg( )+ a.

(5) Let A € Tr9(al), then

|Tr(CUN — ol)U")| = |X—aof|/Te(CUU™)|
Tr(C)[]A = af
< e
which yields Tr¢ (o) ={AeC:|Tr(C)|]A—a| <&} forall \,a € C. O

Next, we give characterization of the C-trace pseudospectrum Tr< (-).

Theorem 2.2. Let T,C € M, (C), U € U,(C), A € C, and € > 0. If there is D € M, (C) such
that |Te(CUDU*)| < & and Te(CU(M — T — D)U*) = 0 if, and only if A € Tr(T).

Proof. The 7if 7 part. We assume that there exists D € M,,(C) such that
|Tr(CUDU*)| <e and Tr(CUN —T —D)U*) =0
for all C € M,,(C), U € U,(C) and A € C. Then, for all C € M,,(C) and U € U,,(C), we have
|Te(CUMN — T)U*)| = |Tr(CUDU™)| < e.

Thus, A € Tr(T).

The ”only if 7 part. Suppose A € Trsc(T ). There are two cases:

1% case : If X € Tr$(T), then it is sufficient to take the matrix zero (D = Oyxp).
2" case : If A € Tr9(T)\Tr§ (T). Then, for all C' € M,,(C) and U € U, (C),

ITH(CU — T)U)| < e.
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We now consider a square matrix D by

p_ T(CUN - T)U”)

Tr(C) !

where, C' is not a scalar matrix and Tr(C) # 0. Then, D is well defined and, as is easily verified,

D € M,(C) and

o Te(CUN —T)U™) .
[Tr(CUDU™)| = ‘Tr<CU( () 1\U
|Te(CUN — T)U™)| .
= Tr(CUIU™)| < e.
0| | Tr( )l
Also, we have
Te(CUN —T — D)U*) =Tr(CUNM - T — Tr(CUWN —T)U”) nu*) =o.
Tr(C)
So, the proof is complete. O

Theorem 2.3. T,C € M, (C), and ¢ > 0. Then,
Te§ (T) + O. C Tr, 5(T), (1)

holds for §,e > 0 with O, denoting the closed disk in the complex plane centered at the origin

with radius \Tr?C)|' If we take § = 0, we obtain an inner bound for Trac(T), namely

TS (T) + 0. € Te9(T). (2)

Proof. Let X € Tr(;c(T) + O,. Then, there exists A\ € Tr(;C(T) and Xy € O, such that A = A\ + Aa.

Therefore,

g
T MI—T)YU"| <6 and [N < ———
| I'(CU( 1 )U )| = 0 an | 2| = |’I‘I‘(C>|

for all C € M,,(C) and U € U, (C). Now, we have for all C € M,,(C) and U € U, (C) that

|Te(CUN —T)U™)]

ITe((CU (A1 + X2)I — THU™)|
ITr(CUNU* +CU (N — T)UY)|

< | |Te(CUU™)| + [T (CU (M T — T)U*)|
< Te(O)||Ae] + [T (CU(MI = T)U™)|

< e+,

so that (1) holds. Finally, let 6 = 0, then the desired inclusion (2) is obtained. O

Theorem 2.4. Let T,B and C € M, (C) such that TB = BT and ¢ > 0. If T is normal
(i.e. T*T =TT*), then

(T + B) C o(T) + TrS (B).
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Proof. Let T is normal, so there exists a unitary matrix Z € M,,(C) such that

Z*TZ = AIn, ® Aalp, @ ... ® Meln, .

The condition T'B = BT implies that

Z*BZ=T1®T... 0T

where, T; € M, (C),i=1,...,k . From Property (4) and (6) in Theorems 2.1 we obtain that

TE(T+B) = T(2"'TZ+ Z*BZ)

= TSNy, +T) & ... ® NIy, +T1))
k
= Umfoi, +1)

i=1

k
= Yrn+md(m)
1=1

N

o(T) + Tr¢(B).

This is what we wanted to prove. O

Now, the following should be obvious.

Corollary 2.1. If B = 0y,xn, then

TC(T) C o(T) + {)\ eC:|N< Tr?C’)}'
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