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Abstract

In this paper we discuss theoretical properties of the C-trace pseudospectrum for an
element in the matrix algebra. We also make several observations on the C-trace pseu-
dospectrum.
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Resumen

En este art́ıculo discutimos las propiedades teóricas del pseudoespectro de C-traza para
un elemento en el álgebra matricial. También hacemos varias observaciones sobre el pseudo-
espectro de C-trazas.
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1 Introduction

Let Mn(C) (Mn(R)) denote the algebra of all n× n complex (real) matrices and by Un(C) the
group of all unitary matrices in Mn(C). I denotes the n× n identity matrix and the conjugate
transpose of T is denoted by T ∗. Let T ∈Mn(C), then the eigenvalues of the matrix T is denoted
by σ(T ) and is defined as

σ(T ) =
{
λ ∈ C : λI − T is not invertible

}
,

and its spectral radius by

r(T ) = sup
{
|λ| : λ ∈ σ(T )

}
.
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Now, let λ ∈ C and

sn(λI − T ) ≤ . . . ≤ s2(λI − T ) ≤ s1(λI − T )

be the singular values of the matrix λI − T where s1(λI − T ) is the smallest and sn(λI − T )
is largest singular values of the matrix. For an n × n complex matrix T and a non-negative
real number ε, the pseudospectrum of the matrix T is defined as the following closed set in the
complex plane

σε(T ) =
{
λ ∈ C : sn(λI − T ) ≤ ε

}
.

Let T ∈ Mn(C) and 0 < ε < 1. The condition pseudospectrum of the matrix T is denoted
by Σε(T ) and is defined as

Σε(T ) =
{
λ ∈ C : sn(λI − T ) ≤ ε s1(λI − T )

}
.

For more information on various details on the above concepts, properties and applications
of pseudospectrum [1, 7], condition spectrum [2, 3] and the interested reader may consult the
remarkable books [5, 6]. In [4], A. Ammar, A. Jeribi and K. Mahfoudhi defined the notion of
trace pseudospectrum for an element in the matrix algebraMn(C), for every T ∈Mn(C), λ ∈ C,
and ε > 0 by

Trε(T ) =
{
λ ∈ C : |Tr(λI − T )| ≤ ε

}
,

where Tr(·) denotes the trace of a matrix.

In this paper, we are interested in another generalization of eigenvalues called C-trace pseu-
dospectrum for an element in the matrix algebra to give more information about matrix T . Let
C ∈ Mn(C), U ∈ Un(C), λ ∈ C and ε > 0. Then, the C-trace pseudospectrum of T ∈ Mn(C) is
denoted by TrCε (T ) and is defined as

TrCε (T ) =
{
λ ∈ C : |Tr(CU(λI − T )U∗)| ≤ ε

}
.

The C-trace pseudoresolvent of T is denoted by TrCρε(T ) and is defined as

TrCρε(T ) =
{
λ ∈ C : |Tr(CU(λI − T )U∗)| > ε

}
while the C-trace pseudospectral radius of T is defined as

TrrCε (T ) := sup
{
|λ| : λ ∈ TrCε (T )

}
.

Remark 1.1. Let T,C ∈ Mn(C) and U ∈ Un(C). Then, for C = U = U∗ = I, the C-trace
pseudospectrum coincides with the trace pseudospectrum, i.e., TrCε (T ) = Trε(T ).

The C-trace pseudospectrum of a matrix may be used to draw surprisingly strong conclusions
about the spectrum and the combinatorial structure of a matrix. In this paper, we will develop
some results on the C-trace pseudospectrum for an element in the matrix algebra, which directly
relate its shape to intrinsic properties of the matrix, and thus provide means of detecting such
properties.
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2 C-trace pseudospectrum.

We begin by a simple example in which the C-trace pseudospectrum can be obtained ana-
lytically:

Example 2.1. Let ε > 0 and consider the matrices

T =

(
α γ
0 β

)
∈M2(C), C =

(
α1 γ1
0 β1

)
∈M2(C)

and

U =

(
0 eiφ

−e−iφ 0

)
∈ U2(C)

where, α, β, γ, α1, β1 and γ1 ∈ C. Now, we compute that

CU(λI − T )U∗ =

(
−γγ1e−iφ − α1(λ− β) γ(λ− α)

−γβ1e−2iφ β1(λ− α)

)
.

Thus

TrCε (T ) =
{
λ ∈ C : | − γγ1e−iφ − α1(λ− β) + β1(λ− α)| ≤ ε

}
=

{
λ ∈ C :

∣∣|γγ1| − |α1(λ− β)| − |β1(λ− α)|
∣∣ ≤ ε}.

Consequently, γ = 0 (γ1 = 0) if and only if

TrCε (T ) =
{
λ ∈ C : |α1(λ− β)|+ |β1(λ− α)| ≤ ε

}
.

If γ1 = 0, α = β and α1 = β1, then

TrCε (T ) =

{
λ ∈ C : |λ− α| ≤ ε

2|α1|

}
.

The following properties of the C-trace pseudospectrum are easy to check from the definition
of the C-trace pseudospectrum.

Theorem 2.1. Let T,C ∈Mn(C) and ε > 0. Then,

(1) TrC0 (T ) =
⋂
ε>0

TrCε (T ).

(2) If 0 < ε1 < ε2, then TrCε1(T ) ⊂ TrCε2(T ).

(3) TrCε (T ) is a non-empty compact subset of C.

(4) If α ∈ C and β ∈ C\{0}. Then, TrCε (βT + αI) = βTrCε
|β|

(T ) + α.

(5) TrCε (αI) =
{
λ ∈ C : |Tr(C)||λ− α| ≤ ε

}
for all λ, α ∈ C.

(6) TrCε (UTU∗) = TrCε (T ), for all unitary (resp. anti-unitary) U onMn(C).

(7) TrCε (T ∗) = TrCε (T ).
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Proof. The first two items, (6) and (7) can be immediately checked from the definitions of C-trace
pseudospectrum, so we only include the proof of item (3), (4) and (5).

(3) Using the continuity from C to [0,∞[ of the map

λ→ |Tr(CU(λI − T )U∗)|,

we get that TrCε (T ) is a compact set in the complex plane containing the eigenvalues of T.

(4) For C ∈Mn(C) and U ∈ Un(C), we have

TrCε (βT + αI) =

{
λ ∈ C : |Tr(CU(λI − βT − αI)U∗)| ≤ ε

}
=

{
λ ∈ C : |β|

∣∣∣∣Tr

(
CU(

λ− α
β

I − T )U∗
)∣∣∣∣ ≤ ε}

=

{
λ ∈ C :

∣∣∣∣Tr

(
CU(

λ− α
β

I − T )U∗
)∣∣∣∣ ≤ ε

|β|

}
.

Then, λ ∈ TrCε (βT + αI). Hence,
λ− α
β
∈ TrCε

|β|
(T ). Thus, λ ∈ βTrCε

|β|
(T ) + α.

(5) Let λ ∈ TrCε (αI), then

|Tr(CU(λI − αI)U∗)| = |λ− α||Tr(CUU∗)|
= |Tr(C)||λ− α|
≤ ε.

which yields TrCε (αI) =
{
λ ∈ C : |Tr(C)||λ− α| ≤ ε

}
for all λ, α ∈ C.

Next, we give characterization of the C-trace pseudospectrum TrCε (·).

Theorem 2.2. Let T,C ∈ Mn(C), U ∈ Un(C), λ ∈ C, and ε > 0. If there is D ∈ Mn(C) such
that |Tr(CUDU∗)| ≤ ε and Tr(CU(λI − T −D)U∗) = 0 if, and only if λ ∈ TrCε (T ).

Proof. The ”if ” part. We assume that there exists D ∈Mn(C) such that

|Tr(CUDU∗)| ≤ ε and Tr(CU(λI − T −D)U∗) = 0

for all C ∈Mn(C), U ∈ Un(C) and λ ∈ C. Then, for all C ∈Mn(C) and U ∈ Un(C), we have

|Tr(CU(λI − T )U∗)| = |Tr(CUDU∗)| ≤ ε.

Thus, λ ∈ TrCε (T ).

The ”only if ” part. Suppose λ ∈ TrCε (T ). There are two cases:

1st case : If λ ∈ TrC0 (T ), then it is sufficient to take the matrix zero (D = 0n×n).

2nd case : If λ ∈ TrCε (T )\TrC0 (T ). Then, for all C ∈Mn(C) and U ∈ Un(C),

|Tr(CU(λI − T )U∗)| ≤ ε.
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We now consider a square matrix D by

D =
Tr(CU(λI − T )U∗)

Tr(C)
I

where, C is not a scalar matrix and Tr(C) 6= 0. Then, D is well defined and, as is easily verified,
D ∈Mn(C) and

|Tr(CUDU∗)| =

∣∣∣∣Tr

(
CU

(
Tr(CU(λI − T )U∗)

Tr(C)
I

)
U∗
)∣∣∣∣

=
|Tr(CU(λI − T )U∗)|

|Tr(C)|
|Tr(CUIU∗)| ≤ ε.

Also, we have

Tr(CU(λI − T −D)U∗) = Tr

(
CU
(
λI − T − Tr(CU(λI − T )U∗)

Tr(C)
I
)
U∗
)

= 0.

So, the proof is complete.

Theorem 2.3. T,C ∈Mn(C), and ε > 0. Then,

TrCδ (T ) +Oε ⊆ TrCε+δ(T ), (1)

holds for δ, ε > 0 with Oε, denoting the closed disk in the complex plane centered at the origin
with radius ε

|Tr(C)| . If we take δ = 0, we obtain an inner bound for TrCε (T ), namely

TrC0 (T ) +Oε ⊆ TrCε (T ). (2)

Proof. Let λ ∈ TrCδ (T ) +Oε. Then, there exists λ1 ∈ TrCδ (T ) and λ2 ∈ Oε such that λ = λ1 +λ2.
Therefore,

|Tr(CU(λ1I − T )U∗)| ≤ δ and |λ2| ≤
ε

|Tr(C)|

for all C ∈Mn(C) and U ∈ Un(C). Now, we have for all C ∈Mn(C) and U ∈ Un(C) that

|Tr(CU(λI − T )U∗)| = |Tr((CU(λ1 + λ2)I − T )U∗)|
= |Tr(CUλ2U

∗ + CU(λ1 − T )U∗)|
≤ |λ2||Tr(CUU∗)|+ |Tr(CU(λ1I − T )U∗)|
≤ |Tr(C)||λ2|+ |Tr(CU(λ1I − T )U∗)|
≤ ε+ δ,

so that (1) holds. Finally, let δ = 0, then the desired inclusion (2) is obtained.

Theorem 2.4. Let T,B and C ∈ Mn(C) such that TB = BT and ε > 0. If T is normal
(i.e. T ∗T = TT ∗), then

TrCε (T +B) ⊆ σ(T ) + TrCε (B).
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Proof. Let T is normal, so there exists a unitary matrix Z ∈Mn(C) such that

Z∗TZ = λ1In1
⊕ λ2In2

⊕ . . .⊕ λkInk .

The condition TB = BT implies that

Z∗BZ = T1 ⊕ T2 . . .⊕ Tk

where, Ti ∈Mnk(C), i = 1, . . . , k . From Property (4) and (6) in Theorems 2.1 we obtain that

TrCε (T +B) = TrCε (Z∗TZ + Z∗BZ)

= TrCε ((λ1In1 + T1)⊕ . . .⊕ (λkInk + Tk))

=

k⋃
i=1

TrCε (λiIni + Ti)

=

k⋃
i=1

λi + TrCε (Ti)

⊆ σ(T ) + TrCε (B).

This is what we wanted to prove.

Now, the following should be obvious.

Corollary 2.1. If B = 0n×n, then

TrCε (T ) ⊆ σ(T ) +
{
λ ∈ C : |λ| ≤ ε

Tr(C)

}
.
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