
Matriz de adyacencia Ramsey 35
Gde orden n, a trav´es de su matriz de adyacencia A(G), obteniendo la f´ormula T raz(M) =
Pn
i=1 d(vi) = 2|E(G)|, donde M= (A(G))2es una matriz de orden n×n,T raz(M) es la
traza de la matriz M, y d(vi) es el grado del v´ertice vipara i= 1,...,n. 2) Se determina la
matriz de adyacencia Ramsey del menor grafo completo KR(G,H)con componentes h-buena.
Se determina a trav´es de los elementos mij de M, las relaciones existentes entre los lados
y los v´ertices de los grafos GyH, con respecto a KR(G,H)y se obtuvieron las siguientes
propiedades:
1) X
i>j
mij =X
i<j
mij =mij |E(KR(G,H))|=k|E(KR(G,H))|, con k=mij ∈M.
2) Existen r, s ∈Z+, dependientes de E(G), E(H) y E(KR(G,H)), tal que E(KR(G,H))
r=
E(G)
s.
3) Existen p, q ∈Z+, dependientes de V(G), V(H) y V(KR(G,H)), tal que, V(KR(G,H))
p=
V(H)
q.
4) T raz(M) =
n
X
i=1
d(vi) = 2|E(Kn)|.
Palabras y frases clave: Teor´ıa Combinatoria, N´umeros de Ramsey, Grafos con com-
ponentes h-buena, Matriz de adyacencia, Producto de Matrices, Matriz diagonal, Matrices
triangulares.
Abstract
Let be Gand Htwo simple graphs, finite and non-empty. The Ramsey R(G, H) number,
is defined as the smallest positive integer n, such that there is a graph F, that contains
a monochrome copy G
0isomorphic to Gor the complement of F(denote by F), contains
a monochrome copy H
0isomorphic to H. It is said that the complete graph Kncontains
components h-good, if for every sequence siof size m, with i= 1,· · · , m + 1, that colors
the sides of the complete graph Kn=F∪F, such that can be extracted from F, at least
one G
0monochrome copy isomorphic to G´or Fcontains at least one H
0monochrome copy
isomorphic to H. Two main results are presented in this manuscript, these are: 1) The
incident sides of each vertex v1,...,vnof the graph Gare determined, through an adjacency
matrix A(G), getting the formula T raz(M) = Pn
i=1 d(vi) = 2|E(G)|, where M= (A(G))2
is a square matrix of order n×n,T raz(M) is the trace of the matrix M, and d(vi) is the
degree of the vifor i= 1,...,n. 2) The Ramsey adjacency matrix of the least complete graph
KR(G,H)with components h-good is determined. It is determined through the elements mij
of M, the relationships between the sides and the vertices of the graphs Gand H, with
respect to KR(G,H)and the following properties were obtained:
1) X
i>j
mij =X
i<j
mij =mij |E(Kn)|=k|E(Kn)|, with k=mij ∈M.
2) There exist r, s ∈Z+, dependent on E(G), E(H) and E(KR(G,H)), such that E(Kn)
r=
E(G)
s.
3) There exist p, q ∈Z+, dependent on V(G), V(H) and V(KR(G,H)), such that V(KR(G,H))
p=
V(H)
q.
Divulgaciones Matem´aticas Vol. 22, No. 2 (2021), pp. 34–47