CT examination and diagnosis of early lung cancer 149
Vol. 64(2): 142 - 150, 2023
similar studies in several hospitals or medi-
cal centers in the future.
Funding
Exploration of personalized screening
and graded diagnosis and treatment plans
for early lung cancer in Zhejiang Province
based on big data and artificial intelligence
(Project No: 2022C35008).
Competing Interests
The authors declared that they have no
competing interests.
Authors’ Contribution
LS, LW and JL contributed to the con-
ception of the study; LS, XX and JL per-
formed the experiment; LW contributed
significantly to the analysis and manuscript
preparation; LS and JL performed the data
analyses and wrote the manuscript; XX
helped perform the analysis with construc-
tive discussions.
Authors’ ORCID Number
• Liang Sheng: 0000-0003-0620-4779
• Liang Wu: 0000-0002-1247-4583
• Xianwu Xia: 0000-0003-3508-0816
• Junmiao Li: 0000-0001-8890-6242
REFERENCES
1. Takkal S, Van Muylem A, Gevenois PA. CT
Scan in early detection of lung cancer in pa-
tients with chronic obstructive pulmonary
disease: a retrospective monocentric study.
Rev Med Brux 2018; 39(2): 93-100.
2. Iwano S, Ito S, Kamiya S, Ito R, Kato K,
Naganawa S. Utility of metabolic parame-
ters on FDG PET/CT in the classification
of early-stage lung adenocarcinoma: predic-
tion of pathological invasive size. Clin Nucl
Med 2019; 44(7): 560-565.
3. Vial MR, O’Connell OJ, Grosu HB, Her-
nandez M, Noor L, Casal RF, Stewart J,
Sarkiss M, Jimenez CA, Rice D, Mehran
R. Diagnostic performance of endobron-
chial ultrasound-guided mediastinal lymph
node sampling in early stage non-small cell
lung cancer: A prospective study. Respirolo-
gy 2018; 23(1): 76-81.
4. Huang C, Liang J, Lei X, Xu X, Xiao Z,
Luo L. Diagnostic performance of perfusion
computed tomography for differentiating
lung cancer from benign lesions: a meta-
analysis. Med Sci Monit Int Med J Exp Clin
Res 2019; 25: 3485.
5. Zhao Q, Shi CZ, Luo LP. Role of the textu-
re features of images in the diagnosis of so-
litary pulmonary nodules in different sizes.
Chinese J Cancer Res 2014; 26(4): 451.
6. Wang X, Lv L, Zheng Q, Huang X, Li B.
Differential diagnostic value of 64‑slice spi-
ral computed tomography in solitary pul-
monary nodule. Exp Ther Med 2018; 15(6):
4703-4708.
7. Wang XL, Shan W. Application of dynamic
CT to identify lung cancer, pulmonary tu-
berculosis, and pulmonary inflammatory
pseudotumor. Eur Rev Med Pharmacol Sci
2017; 21(21): 4804-4809.
8. Hou H, Xu Z, Zhang H, Xu Y. Combination
diagnosis of multitiancer, pulmonary tuber-
culosis, and pulmonary inflammatory pseu-
dotumor. Eur Rev Med Pharmacol Sci 2017;
21(21): e22250.
9. Li Y, Yang ZG, Chen TW, Yu JQ, Sun JY,
Chen HJ. First-pass perfusion imaging of
solitary pulmonary nodules with 64-detec-
tor row CT: comparison of perfusion para-
meters of malignant and benign lesions. Br
J Radiol 2010; 83(993): 785-790.
10. Wang G, Zhou XM, Zhao RR, Xu W, Zhang
C, Jiang G, Tang X, Yu H. Multi-slice spiral
computed tomography perfusion imaging
technology differentiates benign and malig-
nant solitary pulmonary nodules. Biomed
Res-India 2017; 28(10): 4605-4609.
11. Xing N, Cai Z, Zhao S, Yang L. The compa-
rative study of CT perfusion parameters of
solitary pulmonary nodules with microves-
sel density. Chinese J Med Imaging 2009;
19(4): 251-254.
12. Zhou J, Chen E, Xu H, Ye Q, Li J, Ye S,
Cheng Q, Zhao L, Su MY, Wang M. Feasibi-