
278 Zeng et al.
Investigación Clínica 64(3): 2023
5. Alipour F, Parham A, Kazemi Mehrjerdi
H, Dehghani H. Equine adipose-derived
mesenchymal stem cells: phenotype and
growth characteristics, gene expression
profile and differentiation potentials. Cell
J 2015;16:456-465.
6. Susuki K, Raphael AR, Ogawa Y,
Stankewich MC, Peles E, Talbot
WS,Rasband MN. Schwann cell spectrins
modulate peripheral nerve myelination.
Proc Natl Acad Sci U S A 2011;108:8009-
8014.
7. Marconi S, Castiglione G, Turano E, Bis-
solotti G, Angiari S, Farinazzo A, Cons-
tantin G, Bedogni G, Bedogni A, Bonetti
B. Human adipose-derived mesenchymal
stem cells systemically injected promote
peripheral nerve regeneration in the mou-
se model of sciatic crush. Tissue Eng Part
A 2012;18:1264-1272.
8. Carriel V, Garrido-Gomez J, Hernandez-
Cortes P, Garzon I, Garcia-Garcia S,
Saez-Moreno JA, Del Carmen Sanchez-
Quevedo M, Campos A, Alaminos M.
Combination of fibrin-agarose hydrogels
and adipose-derived mesenchymal stem
cells for peripheral nerve regeneration. J
Neural Eng 2013;10:026022.
9. Suganuma S, Tada K, Hayashi K, Takeu-
chi A, Sugimoto N, Ikeda K,Tsuchiya H.
Uncultured adipose-derived regenerative
cells promote peripheral nerve regenera-
tion. J Orthop Sci 2013;18:145-151.
10. Prockop D J. Stem cell research has only
just begun. Science 2001;293:211-212.
11. di Summa PG, Kalbermatten D F, Raffoul
W, Terenghi G, Kingham PJ. Extracellu-
lar matrix molecules enhance the neuro-
trophic effect of Schwann cell-like diffe-
rentiated adipose-derived stem cells and
increase cell survival under stress condi-
tions. Tissue Eng Part A 2013;19:368-379.
12. Han IH, Sun F, Choi Y, Zou F, Nam KH,
Cho WH, Choi BK, Song GS, Koh K, Lee
J. Cultures of Schwann-like cells differen-
tiated from adipose-derived stem cells on
PDMS/MWNT sheets as a scaffold for peri-
pheral nerve regeneration. J Biomed Ma-
ter Res A 2015;103:3642-3648.
13. Zheng Z, Liu J. GDNF-ADSCs-APG em-
bedding enhances sciatic nerve regenera-
tion after electrical injury in a rat model. J
Cell Biochem 2019;120:14971-14985.
14. Orbay H, Uysal A C, Hyakusoku H, Mi-
zuno H. Differentiated and undifferen-
tiated adipose-derived stem cells im-
prove function in rats with peripheral
nerve gaps. J Plast Reconstr Aesthet Surg
2012;65:657-664.
15. Xu Y, Zhang Z, Chen X, Li R, Li D,Feng
S. A silk fibroin/collagen nerve scaffold
seeded with a co-culture of Schwann
cells and adipose-derived stem cells for
sciatic nerve regeneration. PLoS One
2016;11:e0147184.
16. Kim DY, Choi YS, Kim SE, Lee JH, Kim
SM, Kim YJ, Rhie JW, Jun YJ. In vivo
effects of adipose-derived stem cells in
inducing neuronal regeneration in Spra-
gue-Dawley rats undergoing nerve defect
bridged with polycaprolactone nanotubes.
J Korean Med Sci 2014;29 Suppl 3:S183-
192.
17. Hsueh YY, Chang YJ, Huang T, Fan SC,
Wang DH, Chen JJ, Wu CC, Lin SC.
Functional recoveries of sciatic nerve re-
generation by combining chitosan-coated
conduit and neurosphere cells induced
from adipose-derived stem cells. Biomate-
rials 2014;35:2234-2244.
18. Faroni A, Rothwell S W, Grolla A A, Te-
renghi G, Magnaghi V, Verkhratsky A. Di-
fferentiation of adipose-derived stem cells
into Schwann cell phenotype induces ex-
pression of P2X receptors that control cell
death. Cell Death Dis 2013;4:e743.
19. Guest JD, Rao A, Olson L, Bunge MB,
Bunge RP. The ability of human Schwann
cell grafts to promote regeneration in the
transected nude rat spinal cord. Exp Neu-
rol 1997;148:502-522.
20. Widgerow AD, Salibian AA, Lalezari S,
Evans GR. Neuromodulatory nerve re-
generation: adipose tissue-derived stem
cells and neurotrophic mediation in peri-
pheral nerve regeneration. J Neurosci Res
2013;91:1517-1524.
21. Mandawala AA, Harvey SC, Roy TK,
Fowler KE. Cryopreservation of animal oo-