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Abstract 

  

This paper discusses the modeling of Modified Value-at-Risk 

(MVaR) for asset returns of skewed Student-T distribution. MVaR 

for skewed Student-T distribution is a special form of MVaR 
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models of nonnormal distribution. As a result, this model can be 

used to determine the amount of market risk. Student-T distribution 

is, especially used for asset returns. In conclusion, the performance 

of each model Value-at-Risk applied in accordance with the 

distribution of stock returns is quite good. It is shown that the 

values of QPS are in the interval [0, 2], and tend to be close to zero.  

 

Keywords: Skewed, Distribution, Mclaurin, Gram-Charlier.  
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Modelización del valor en riesgo modificado 
para la distribución sesgada de Student-T 

 

 

Resumen  

  

Este documento analiza el modelado del Valor en riesgo 

modificado (MVaR, por sus siglas en inglés) para los retornos de 

activos de la distribución sesgada de Student-T. MVaR para la 

distribución sesgada de Student-T es una forma especial de los 

modelos MVaR de distribución no normal. Como resultado, este 

modelo se puede utilizar para determinar la cantidad de riesgo de 

mercado. La distribución de Student-T se utiliza especialmente para 

la devolución de activos. En conclusión, el rendimiento de cada 

modelo de Valor en Riesgo aplicado de acuerdo con la distribución 

de los rendimientos de las acciones es bastante bueno. Se muestra 

que los valores de QPS están en el intervalo [0, 2] y tienden a estar 

cerca de cero.  

  

Palabras clave: sesgado, distribución, Mclaurin, Gram- 

Charlier.  

  

  

1. INTRODUCTION  

 

The Value-at-Risk (VaR) is a measure of market risk done by 

using a standard normal distribution approach, with assumed that 

the asset returns unilabiate normal distribution, has two parameters 

mean and standard deviation. The issue is how to determine the 

VaR estimate quartile to the normal distribution when given the 
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level of significance. The modeling of MVaR in this paper is done 

by breaking the probability density function skewed Student-T 

distribution using a Mclaurin series with a differential operator. 

Based on Mclaurin series of a differential operator, Gram-Charlier 

series a function that is expressed to the probability density 

distribution skewed Student-T was then formed. MVaR models 

have been formulated to determine the amount of market risk, 

particularly skewed Student-T distribution for asset returns. As a 

numerical illustration, some of the return of shares traded in the 

stock market in Indonesia was analysed.  

 

 

2. LITERATURE REVIEW  

 

This section discusses the modelling of modified Value-at-

Risk for the skewed Student-T distribution. However, as the basis 

for modelling the Value-at-Risk of the standard normal distribution 

approach is discussed in advance as follows. 

 

 

2.1. Value-at-Risk of Standard Normal Distribution Approach 

The standard method assumes that asset returns bivariate 

normal distribution has two parameters: the mean   and standard 

deviation . The issue of VaR estimation is how to determine the 

percentile to   of the standard normal distribution z : 
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( ) ( ) ( )

zq

f r dr z dz N z




 

     , quantile 

q z                                                                                      (1) 

where )(z  is the density function of the standard normal 

distribution, )(zN  is the cumulative function of the standard 

normal distribution, r  is the random variable of portfolio return, 

( )f r  is the normal distribution density function to return (log 

returns) with the mean   and standard deviation  , and q  is the 

log returns the smallest if given confidence level   (Dokov et al., 

2007). VaR estimation is done by the equation: 

0 0( )VaR W q W z                                                       (2) 

Where 0W  is the initial investment, and the minus sign (-) 

reported a loss (losses).  

 

 

2.2. Value-at-Risk of Standard Student-T Distribution 

Approach 

If it is assumed that the return r  is the standard Student-T 

distributed with degrees of freedom is v , then the quantile of this 

distribution is ( )vq t    , where ( )vt 
 is the quantile  to   

of standard Student-T distribution with degrees of freedom 

1v T  , and T  the number of data observations. The relationship 

between the quantile of standard Student-T distribution with degrees 
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of freedom is v , denoted by vt , and the standard distribution denoted 

by vt


, is: 

( )
/ ( 2) / ( 2) / ( 2)

v
v v

t q q
p P t q P P t

v v v v v v

   
                

 

Where 2v  . Namely, if the quantile to   of  standard 

Student-T distribution with degrees of freedom v , then 

/ / ( 2)q v v  is quantile to   of standard Student-T distribution 

(Tsay, 2005). Therefore, if given probability   and an initial 

investment of 0W , the Value-at-Risk (VaR) can be calculated using 

the equation: 

 

0 0
( )

/ ( 2)

vtVaR W q W
v v

 

 

        

                         (3) 

Where ( )vt   is the quantile to   of standard Student-T 

distribution with degrees of freedom 1v T  , and T  the number 

of data observations, and assuming a negative value to a   

smallest? 

 

 

2.3. Modified Value-at-Risk of Standard Normal Distribution 

Approach 

Cornish-Fisher expansion is used to determine the percentile 

of the distribution of non-normal distribution. Cornish-Fisher 
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expansion is intended to provide an adjustment factor to the 

estimated percentile of the distribution of non-normality, and the 

adjustment of the given normality is small. Therefore, Cornish-

Fisher expansion can be used to the estimation of the VaR whenever 

Profit / Loss (P / L) has a distribution of non-normality. Suppose 

that z  is the percentile of the standard normal distribution for the 

confidence level of   (for example 0,05 1.645z    and so on). 

The meaning of Cornish-Fisher expansion is: 

2 3 3 21 1 1
( 1) ( 3 ) (2 5 )   

6 12 36
z z S z z K z z S higher order terms             

(4) 

Where S  is the skewness and K  is the kurtosis of a 

distribution. If we eliminate higher order terms because it is 

assumed the smaller influence of normality, the expansion becomes:  

2 3 3 21 1 1
( 1) ( 3 ) (2 5 )

6 12 36
z z S z z K z z S          

         
(5) 

To use the expansion, we see the value of percentile
 

z  of 

the standard normal probability distribution table. This is equivalent 

to adjusting the normal percentile z  for skewness and or kurtosis. 

The existence of non-normality of the asset that can be used as a 

guide for choosing the portfolio is different with regard to 

assumptions. According to Dowd (2004) and Linsmeier and Pearson 

(1996), Cornish-Fisher in 1937 developed a new measure where the 

risk is measured by standard deviation, skewness (for return 

asymmetry) and kurtosis (for return fat tails). The measure of this 
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risk is called Modified Value-at-Risk (MVaR), which is a Value-at-

Risk similar to a classic Value-at-Risk approach. According to 

Benninga and Wiener (1998), MVaR is formulated as: 

2 3 3 3
0

1 1 1
( 1) ( 3 ) (2 5 )

6 24 36
MVaR W z z S z z K z z S      

  
          

    

  

(6) 

Where   is the mean,   is the standard deviation, S  is the 

skewness, K  is the kurtosis, and z  is the percentile of the 

standard normal distribution with a significance level of . 

 

 

2.4. Back Test for Performance Evaluation of Vary 

According to Dowd (2004), the back test method can be 

performed using the predicted outcome evaluation approach 

(forecast) introduced by Lopez in 1998. Suppose tr  is the rate of 

loss (if negative) or benefit (if positive) generated in the period t , 

and tVaR  predicted VaR for the period, under Lopez-II approach 

indicator, the function loss observation period t  is given as follows: 












tt

tttt
t

VaRr

VaRrVaRr
C

 if                      ;0

 if ;)(1 2

.                             (7) 

To test the null hypothesis that the tVaR  model is the best, a 

function of quadratic probability score (QPS) can be given by: 
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2

1

2
( )

n

t
i

QPS C p
n



  ,                                                       (8) 

Where p  is the probability value that determined equal to the 

significance level (typically 5%). The QPS value lies between the 

range [0, 2], and the value of the QPS approach to zero, is the best 

model (Dowd, 2004). Referring to equation (22), the range [0, 2] 

shows that the number 0 is the minimum value which occurs when 

the entire t tr VaR , and number 2 is the maximum value that 

occurs when the entire t tr VaR . 

 

 

3. METHODOLOGY 

 

The modelling of Modified Value-at-Risk (MVaR) for 

Skewed Student-T distribution is an attempt to formulate and 

implement an investment risk measurement tool, especially on stock 

returns which follows the distribution of Skewed Student-T (non-

normal). Simply put, MVaR models for skewed Student-T 

distribution is an attempt to describe a phenomenon in stock returns 

in the form of a mathematical formula that is easy to learn and do 

calculations. The modelling stages of MVaR for Skewed Student-T 

distribution is as given in Figure 1 below. 
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Figure 1: Modelling Stages 

 

Figure 1 explained are (i) Identify and name random variables 

of stock returns that do not follow the Normal distribution or person 

who takes the Skewed Student-T distribution, and makes 

assumptions as necessary to simplify the phenomenon so that it can 

be traced mathematically (Kosari, 2018). (ii) Applying known 

mathematical theories to mathematical models that have been 

formulated to obtain mathematical conclusions in the form of the 

MVaR for Skewed Student-T distribution theorem. (iii) Way to 

prove the theorem formulated to draw mathematical conclusions in 

the form of the MVaR for Skewed Student-T distribution theorem, 

and interpret it as information relating to the problem being modeled 

by giving an explanation or making an estimate. (iv) Test estimates 

for real data, which in this study were tested using the Back Test 

based on the Lopez-II approach. If the estimates we make are not in 

line with reality, then the model that is obtained needs to be refined 



  

Modeling of Modified Value-At-Risk for the Skewed Student-

T Distribution 

    942 

 

 

or formulate a new model and start recycling. It could also improve 

the assumptions given (Indriastuti, 2019). 

 

 

4. MODELLING RESULT 

 

In this section, we developed a theorem of Modified Value-at-

Risk (MVaR) for an asset that follows the distribution of skewed 

Student-T. For a random variable   that follows the distribution of 

skewed Student-T, referring to Hu and Kercheval (2010), 

Gaivoronski and Pflug (2005), Ciccio and Monti (2011), the 

probability density function can be expressed as: 

( 1)/2
2{( 1) / 2}

( | , ) 1
2( 2) ( / 2)

v
v

g r v b
vv v






 
  

  
    

 

 

, (9) 

Where, 

( ) / (1 ) jika /

( ) / (1 ) jika /

br a r a b

br a r a b






   
 

   
. 

The constant a  and b  is defined as 

2
4

1

v
a c

v






and 2 2 21 3b a   , and for the random variable 

r  with mean zero and variance one, constants 

c is {( 1) / 2}/ ( 2) ( / 2)c v v v     , with degrees of freedom 

1v T   where T  is the number of observation data. In relation to 

the formulation of a Modified Value-at-Risk (MVaR) model, this 
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paper develops the theorem of MVaR Student-T distribution, as 

follows: Theorem 1. An asset returns when having skewed Student-

T distribution, with degrees of freedom v , then MVaR of the initial 

capital 0W  and the significance level of , can be calculated using 

the following equation: 

 

 2 31 1
0 6 24

[ ( ) { ( ) 1} { ( ) 3 ( )}v v v vMVaR W t t S t t K            

 

3 21
36

{2 ( ) 5 ( )} ]
/ ( 2)

v vt t S
v v


 


  

 

 

where   is the mean, S  is the skewness, K  is the kurtosis, 

and   is the standard deviation, and ( )vt   is the percentile of  

standard Student-T distribution with degrees of freedom 1v T  , 

and T  is the number of data observations, and 4v  . 

Proof: Suppose r  is a random variable return (log returns) 

assets. Furthermore, the standard Student-T distributed random 

variables have a probability density function as follows: 

 

( 1)/2
2

( | ) 1
2

v
r

f r v c
v

 
 

  
  

; r                  (10) 

Where {( 1) / 2}/ ( 2) ( / 2)c v v v     , and v  is the 

degree of freedom. 
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 According to Johnson and Kotz (1970), if ( | )f r v  is the 

probability density function with a cumulant 1 , 2 , …, then the 

function: 

1

( | ) exp {( ) / !} ( | )j
j

j

g r v D j f r v




 
  
 
 

                               (11) 

Will have a cumulant 1 1  , 2 2  , …. It is important to 

explain the equation (11). Operator 

1

exp {( ) / !}j
j

j

D j




 
 
 
 

 , 

Has the general shape description Mclaurin series as: 

0 1

{( ) / !} / !

i

j

i j

D j i
 

 

 
 
 
 

   

Suppose D  expresses differential operator, 

and ( ) ( ) /j j jD f r d f r dr . For equation (9), differential order 
j  

from ( | )f r v  expresses ( | ) ( | ) ( | )j
jD f r v P r v f r v (1). 

                                                            
 

(1) Example:  

1
2

1
1

( | ) 2 1
2 ( 2) 2

v r r
P r v

v v


  
          

 

  

2 12 2 2 2

2 2

1 1 1
( | ) 4 1 2 1

2 2 2 ( 2) 2( 2)

v r r v r
P r v

v v vv

 
       
                      

    

               

2
2 2

2

1
4 1

2 2( 2)

v r r

vv


  
         

  

    



 945                                                                                                        Sukono et al.   

                                                    Opción, Año 35, No.89 (2019): 932-957 

 

 

Referring to Chateau and Dufresne (2017), if ( | )f r v  is the 

probability density function, then the Gram-Charlier series of 

( | )g r v  expressed in ( | )f r v  is given as: 

21
3
16

12
2

2
12

1
1 3()|()()|()|()|(   vrfDvrDfvrfvrg  

...)|()46()|() 4
4312

2
1

4
124

13
3  vrfDvrfD  , (12) 

It forms the cumulative distribution function of the equation 

(12) as: 

21
1 1 22

( | ) ( | ) ( | ) ( ) ( | ) ...
r r

g t v dt f t v dt f r v Df r v  
 

      .    (13) 

It should be noted again that the Cornish-Fisher expansion is 

intended to provide an adjustment factor to the estimated percentile 

of non-standard distribution. Thus, the expectation and standard 

deviation in the calculation of Value-at-Risk are unchanged (fixed). 

Because ( | ) ( | ) ( | )j
jD f r v P r v f r v

 
and if the expected value 

and standard deviation of ( | )f r v  and ( | )g r v
 is equal, then 

1 2   0 (2) and ( | )g r v  equation (10) become: 

1 1
3 3 4 46 24

( | ) [1 ( | ) ( | ) ...] ( | )g r v P r v P r v f r v     ,          (14) 

                                                            
(2)  2 21

1 1 22
( | ) ( | ) ( | ) ( ) ( | )rg r v dr rf r v dr rDf r v dr rD f r v dr  

   

   
        

                     2 21
1 1 22

( | ) ( ) ( | )g f rDf r v dr rD f r v dr    
 

 
      

    If g f  , he must
 1 2 0   . The same way, for verification 1 2 0    

through g f  . 
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and the cumulative distribution function of the equation (14) 

is: 

1 1
3 2 4 36 24

( | ) ( | ) [ ( | ) ( | ) ...] ( | )
r r

g t v dt f t v dt P r v P r v f r v 
 

     . 

  (15) 

It is assumed that ( | ) ( | ) 0jP r v f r v   is for moments of 

high degree (greater 4) of r . Generally it will be obtained from: 

1
0 1

( | ) [ { ( ) / !} / !] ( | )
r j i

ji j
g t v dt D D j i f r v

 
 

   . (3) (16) 

For the Cornish-Fisher expansion, taken any value R  and 

T  such as that: 

( | ) ( | )
R T

g r v dr f r v dr
 

 
   .                                   (17) 

Whereas   is the probability value. Based on the equation 

(17) transformation functions may be formed: 

0 1 1 2 2 3 3( | ) ( | ) ( | ) ( | ) ...R f T v a a H T v a H T v a H T v           

or, 

0 1 1 2 2 3 3( | ) ( | ) ( | ) ( | ) ...T g R v b b H R v b H R v b H R v           

Where ( ) ( )j
jH x D f x  determine the term to j  of 

polynomial expansion. 

                                                            
 

(3)   If ( )f x  the probability density function, then the function 

                 
1 0 1

( ) exp[ {( ) / !}] ( ) { [ {( ) / !}] / !} ( )j j i
j jj i j

g x D j f x D j i f x 
  

  
       
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Referring to Coi and Sweetman (2010), a non-standard 

process can be expressed by a polynomial expansion of the series as 

a standard process Hermetic: 

1
1

He ( )j j
j

R T h T  





 
 

  
  

                            (18) 

 )52()3()1( 3
5

3
4

2
3  TThTThThT  .   

(19) 

 In the same way, a standard process can be expressed in 

non-standard processes as: 

1
3

He ( )j j
j

T R h R  






                                                (20) 

 )52()3()1( 3
5

3
4

2
3  RRhRRhRhR  .      

(21) 

Where   is the scaling factor that ensures R  is have 

variance 1. He j  Polynomial Hermete to j , which 1He ( )  , 

2
2He ( ) 1   , 

3
3He ( ) 3    , 

3
4He ( ) 2 5    , with 

  any value. 

Furthermore, because the Cornish-Fisher expansion aims to 

adjust the percentile of the distribution of non-standard to standard 

distribution, in this case only equation (21) is considered. Suppose  

3  and 4  successively express skewness and kurtosis, the 
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value jh , 1,...,5j   successively is: 1 2 0h h  , 3 3 / 6h  , 

4 4 / 24h   and 
2

5 3 / 36h  . When the chosen value 1  , and 

also substituting values jh , 1,...,5j   into the equation (19) the 

following formula will be obtained: 

 2 3 3 21 1 1
3 4 36 24 36

( 1) ( 3 ) (2 5 )R T T T T T T               .        (22) 

Based the equation (22), as well as referring to equation (3) 

and (5), Modified Value-at-Risk for the return of assets following 

the skewed Student-T distribution can be calculated using the 

following formula:  

 

 2 31 1
0 6 24

[ ( ) { ( ) 1} { ( ) 3 ( )}v v v vMVaR W t t S t t K          

 

 

3 21
36

{2 ( ) 5 ( )} ]
/ ( 2)

v vt t S
v v


  


.                          (23) 

Where   is the mean,   is the standard deviation, S  is the 

skewness (for the return of non-symmetry), and K  is the kurtosis 

(for the return of the fat-tail), and ( )vt   is the quantile to   

standard Student-T distribution and 2v  . □ 
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5. NUMERICAL ILLUSTRATION 

 

To provide an idea of the application of the models discussed 

in section 2, this section gives a numerical illustration. Numerical 

illustration begins from the analyzed data, estimated distribution 

model, calculation of Value-at-Risk, and backtesting to look at the 

performance of the model used, like the following (Yang et al., 

2019). 

 

 

5.1. Data 

Stock data analyzed accessed through website 

http://www.finance.go.id//. Data consisted of 10 (ten) stocks are 

chosen, for during the period January 2, 2014 to June 4, 2017, which 

includes shares: INDF, DEWA, AALI, LSIP, ASII, TURB, HDMT, 

BMRI, UNTR, and BBRI. Furthermore, respectively they are called 

until. Data stock prices are then determined to return each by using a 

log stock return. Return data for stocks until will then be used to 

calculate the Value-at-Risk (VaR) or Modified Value-at-Risk 

(MVaR) with a parametric approach as follows (Soo et al., 2019). 

 

 

5.2. The VaR Calculation by Parametric Approach 

The calculation of VaR or VaR return stock with a parametric 

approach will be based on the standard normal distribution approach 

and standard Student-T distribution approaches. This is done 
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because there are some stock returns that are a follow a normal 

distribution, and there is also a follow standard Student-T 

distribution. This way is expected to generate VaR calculations in 

accordance with the distribution. The steps are as follows: First, 

shaping of the distribution estimated returns for each stock 1S  

until 10S . Based on the shape of the distribution estimator will 

estimate values of the estimators of mean ̂ , standard deviation̂ , 

skewness ̂  and kurtosis ̂ , for each stock returns. Second, 

determining the level of significance   which will be used, so the 

percentile can be determined to   appropriate distribution of the 

approach used, from the available distribution table (standard 

normal distribution or standard Student-T distribution). Using 

percentile to   and assuming the amount of the initial 

investment 0W , we calculated the VaR or MVaR. Third, back 

testing each VaR calculation results or MVaR. First, estimating the 

shape of the distribution of returns for each stock  1S  until 10S .  The 

estimation is done using statistics of quantile-to-quantile plot (QQ-

plot), and also using the Anderson-Darling ( AD ) statistics. The 

estimation is done using the software Minitab 14. One example is 

the estimation of the distribution of stock returns 1S . Histogram of 

stock returns 1S  is given in Figure 2 below (Sears, 2018). 
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Figure 2: Histogram Stock Return of 1S  

 

Figure 2, looks like a histogram of the normal distribution. 

Based on the histogram analysis, set hypotheses 0 :H  stock returns 

1S  follow a normal distribution, with alternative 1 :H  stock returns 

1S  do not follow a normal distribution. Hypothesis testing for 

distribution of stock returns estimator form 1S  performed using QQ-

plots and statistics of AD . QQ-plot to test hypotheses stock returns 

1S  is given in Figure 3 below. 
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Figure 3: Distribution of Normal QQ-plot Stock Return of 1S
 

 

It appears that Figure 3 shows that the dots are formed almost 

entirely in a straight line from the chart, so that it can be concluded 

that the hypothesis
 0H  can be accepted. It means that the stocks 

return data 1S  is an appropriate follow of a normal distribution. It is 

also supported by obtaining the statistical values of AD = 0.570 

which is relatively small. Based on the estimator forms of 

distribution, it can estimate the parameters mean ̂ , standard 

deviation̂ , skewness ̂  and kurtosis ̂ , the results are given in the 

Table 1 (Matsubara & Yoshida, 2018). 

 

Table 1: Descriptive Statistics of S1 Stock Returns 

Variable  Count      Mean      StDev    Variance  Skewness  Kurtosis 

S1            829       0.000450  0.04638   0.00215        0.16        2.91 
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Each parameter estimator is 1̂ =0.000450, 1̂ = 0.04638, 

1̂ =0.160 and 1̂ =2.910. Estimates of distribution forms and 

parameter values are also carried out on nine other stock returns. 

Shape estimation results and the distribution of stock returns 

parameters 1S  until 10S  are given in Table 2. Second, setting the 

level of significance  =0.05 of the standard normal distribution 

table obtained percentile 05.0z =-1.645.  Here is assumed that the 

amount of the initial investment of 0 1W   rupiah (IDR) unit. 

Because stock returns of 1S  is a normal distribution, to calculate 

(VaR parameters require the mean ̂  and standard deviation̂ .  By 

using the mean 1̂ , satandard deviation 1̂ , initial investment 0W  

and percentile 0,05z , The VaR which is calculated using equation 

(2) is as follows: 

075845.004638.0645.1000450.0(11 VaR
 

The VaR calculation was thereby also conducted on other 

stocks return in accordance with the form of distribution. If the 

stock returns have the form of standard Student-T distribution, the 

VaR is calculated using the formula (3). If stock returns are not 

normally distributed, and did not follow the Student-t distribution, 

the VaR is calculated using the formula (6). Whereas, if following 

the Skewed Student-T distribution, the VaR is calculated using the 

formula (8). The VaR calculation results of the stock return 1S  until 
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10S  are summarized in Table 2. Third, back testing results of VaR 

calculations stock returns 1S  using Lopez-II approach, with the loss 

of function indicators (7). If probability value of 5%p  , then 

using equation (15) QPS =0.0113728 is obtained. The calculation 

results for stock return 1S  until 10S  are summarized in Table 2. 

 

Stocks 

( iS
) 

Dist 
Stat. 

AD 

Mean 

( i̂ ) 

Std. 

Dev 

( i̂
) 

Skewn

ess 

( i̂ ) 

Kurtos

is 

( i̂ ) 

VaR QPS 

1S
 

Normal 0.570 
0.000

45 

0.0463

8 
.160 2.910 0.07585 0.11373 

2S
 

Skew 

Student-

T 

8.280 
0.002

87 

0.0648

7 
.868 5.041 0.08692 0.15131 

3S
 

Logistic 8.199 
0.001

58 

0.0368

0 
0.030 5.880 0.09344 0.04203 

4S
 

Logistic 
21.70

8 

0.000

27 

0.0367

5 
0.600 9.150 0.08843 0.05072 

5S
 

Logistic 3.597 
0.000

97 

0.0342

9 
.070 5.050 0.05492 0.08567 

6S
 

Skew 

Student-

T 

20.27

1 

0.001

51 

0.0550

4 
.193 11.032 0.05943 0.12559 

7S
 

Normal 0.312 
0.000

29 

0.0530

2 
.040 2.810 0.08692 0.00769 

8S
 

Logistic 3.529 
0.000

85 

0.0337

1 
.430 3.640 0.04789 0.12266 

9S
 

Logistic 7.265 
0.001

31 

0.0376

5 
.150 5.930 0.05450 0.11629 

10S
 

Logistic 1.764 
0.000

96 

0.0333

7 
.310 2.540 0.04922 0.10520 

       
Averag

e 
0.09209 
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From Table 2, it is shown that stock returns 1S , with 

probability 5%p   produces a value of 
QPS  amount 0.113728. 

Value-at-Risk (VaR) of stock return 1S  showed performance either 

when the value 
QPS  small near zero. Thus, VaR rate of return 1S  

is a good enough performance. Therefore, it can be used as a 

measure of risk based on parametric approach. Similarly, VaR for 

the return of other stocks showed a good enough performance, 

because the value QPS  is small enough based on parametric 

approach. Return stock 1S  until 10S  that produces value QPS  

which is relatively small are respectively the stock return 7S  

amount 0.007690; 3S  amount 0.042026; 4S  amount 0.050717 and 

5S  amount 0.085666. Return of stocks that produces a value 
QPS  

which is relatively large are respectively 2S  amount 0.151306; 6S  

amount 0.125594; 8S  amount 0.122664; 9S  amount 0.116292; 1S  

amount 0.113728 and 10S  amount 0.105205. However, all values of 

QPS  each stock returns 1S  until 10S  are still in the range [0, 2] and 

tend to be closer to zero value. Overall, the average value of stock 

returns 1S  until 10S  amount is 0.092089. 
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6. CONCLUSION 

 

This paper has discussed the modelling of the Modified 

Value-at-Risk for skewed Student-T distribution. The modelling is 

based on Cornish-Fisher expansion. This paper also discussed the 

Value-at-Risk (VaR) approach to the standard normal distribution, 

VaR approach to the standard Student-T distribution, and Modified 

Value-at-Risk (MVaR). Measuring the performance of the model of 

Value-at-Risk. It has performed by using back testing with Lopez-II 

approach. As a numeric illustration, this paper used ten (10) stocks 

notated as 1S  until 10S . In accordance with the distribution model of 

each analyzed stock, the amount of Value-at-Risk was then 

calculated, and back testing was also performed. Back testing results 

show that the performance of each model Value-at-Risk applied in 

accordance with the distribution of stock returns is quite good. It is 

shown that the values of QPS are in the interval [0, 2], and tend to 

be close to zero. 
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