Revista de Ciencias Sociales (RCS)
Vol. XXX, No. 4, Octubre - Diciembre 2024. pp. 31-41
FCES - LUZ ● ISSN: 1315-9518 ● ISSN-E: 2477-9431
Como citar: Herrera, A. M., Cumpa, M., Llanos, K. N.,
y Cerna, E. A. (2024). Attitudes towards mathematics and learning
approaches in university students. Revista De Ciencias Sociales, XXX(4),
31-41.
Attitudes towards mathematics and learning approaches
in university students
Herrera Alvarez, Angela María*
Cumpa Valencia, Moisés**
Llanos Miranda, Kelva Nathali***
Cerna Figueroa, Edwin Angel****
Abstract
The study of attitudes
toward mathematics has received much attention due to the influence it has on
student learning and possibly the adoption of some approach. Therefore, the
objective of this study was to analyze the association between attitudes
towards mathematics and learning approach in a group of 228 university students
of Pedagogy from a public university in Lima-Peru. The research has a
quantitative approach and correlational design. Data collection was done using
two instruments, the scale of attitudes towards mathematics and the revised
Study Processes Questionnaire (R-CPE-2F). The results report that there is a
direct association between the variables; it has also been found that learning
approaches are associated to a greater extent with the dimensions of usefulness
and motivation towards mathematics. Regarding the superficial approach, it has
a positive association with the motivation and anxiety generated by
mathematics, while the deep approach has a greater association with the
usefulness, motivation, and confidence towards this subject. It is concluded,
therefore, that the attitudes that students have towards mathematics would depend
on several factors such as: Predisposition, motivation, and the usefulness they
give it for their training.
Keywords: Attitudes mathematics;
mathematical utility; learning approaches; deep approach; surface approach.
Actitudes hacia la matemática y
enfoques de aprendizaje en estudiantes universitarios
Resumen
El
estudio sobre las actitudes hacia las matemáticas ha recibido mucha atención
debido a la influencia que tiene en el aprendizaje de los estudiantes y
posiblemente sobre la adopción de algún enfoque. Por ello, el objetivo
de este estudio fue analizar la asociación entre las actitudes hacia la
matemática y el enfoque de aprendizaje en un grupo de 228
estudiantes universitarios de Pedagogía de una
universidad pública en Lima-Perú. La investigación tiene un enfoque cuantitativo
y diseño correlacional. La recolección de datos se hizo mediante dos
instrumentos, la escala de actitudes hacia la matemática y el cuestionario
revisado de procesos de Estudio (R-CPE-2F). Los resultados reportan que
hay una asociación directa entre las variables; también se
ha encontrado que los enfoques de aprendizaje se asocian en mayor medida con
las dimensiones de utilidad y motivación hacia la matemática. En cuanto al
enfoque superficial, tiene asociación positiva con la motivación y la ansiedad
que genera la matemática; mientras que el enfoque profundo tiene mayor
asociación con la utilidad, la motivación y la confianza hacia esta asignatura.
Se concluye, por tanto, que las actitudes que tienen los estudiantes hacia las
matemáticas dependen de varios factores
como: La predisposición, la motivación y la utilidad que le den para su
formación.
Palabras
clave: Actitudes
matemáticas; utilidad matemática; enfoques de aprendizaje; enfoque profundo;
enfoque superficial.
Introduction
In the
last two decades, the study of attitudes in the educational field has become an
important variable to understand the behavior of students towards some
phenomenon. Thus, attitudes towards research, homework, learning of different
subjects, as well as attitudes towards mathematics, which is defined as the
student's learned predisposition towards the subject, are studied. Mujica
(2022), points out that attitudes are a set of representations of thought, so
these can be positive or negative towards the content, which makes that thought
is conditioned by a previous feeling (Duarte-Sepúlveda, Ricardo-Quiñones & Santos-López, 2018;
Cardoso, 2019).
Regarding
the learning of mathematics, it is understood that attitudes are a fundamental
aspect of learning (Orjuela, Hernández & Cabrera, 2019), so the whole
conglomerate of rational and abstract factors such as liking, usefulness,
motivation, interest, among others, involved in its construction are taken into
account. For Prada-Núñez, Fernández-Cézar & Jardey-Suárez (2022);
and Huaire et al. (2023),
attitudes are social constructs resulting from interactions between personal
experiences and the influences of experiences with others. In fact, studies
such as those of Hernández-Dzib & Euan-Mex (2023) show that the application
of innovative strategies allows students to consider the subject as fun,
interesting and useful.
However,
history also shows that many students have negative attitudes towards
mathematics, due to the fact that the subject is considered complicated,
difficult, boring, uninteresting and useless (Duarte-Sepúlveda et al., 2018;
Santiago-López & Farfán-Pimentel, 2023), which influences the
teaching-learning process (Ávila-Toscano et al., 2023). Given this, scientific
studies are key to understanding and improving educational activity
(Gamboa-Araya, 2016; Meza-Cascante et al., 2019).
In the
same context, approaches to learning transcend as one more factor to explain
students' visions and integrate new perspectives to understand the nature of
learning. The term (approaches to learning) was coined by Marton & Säljö in
1976, to refer to learners' adoption of strategies to cope with tasks.
Therefore, the responsibility for learning lies with the student and not with
the teacher when presenting the task (López & López, 2013).
According
to authors such as Biggs (1987); and Soler, Cárdenas &
Hernández-Pina (2018), these processes
are generated in the student when facing an academic task, the same ones that
are influenced by personal characteristics, the nature of the task and the
context. Specifically, Biggs (1987) describes three key elements in the
learning process: the intention (motive), the process that follows (strategy)
and the achievements obtained (performance).
From
the perspective of Marton & Saljö (1976); Zamora,
Gil & De Besa (2020); and Ampuero (2022), approaches to learning
play an important role in academic success; therefore, they would be influenced
by the very processes adopted by students and dependent on other contextual
factors (Huaire & Arteta, 2018). From this perspective, two approaches are
promoted: On the one hand, the superficial approach; and on the other, the deep
approach to learning, according to the needs perceived by the task (López &
López, 2013). The superficial approach, makes use of repetition strategies,
memorization, requires minimal effort and low cognitive level, and its main
objective is the fulfillment of the task (Soler et al., 2018; Pérez, Méndez & Pérez, 2020;
Zamora et al., 2020). Likewise, it is based on extrinsic and instrumental
motivation (Bernal et al., 2019).
For
its part, the deep approach is related to thinking skills (Báez & Onrubia,
2016), which are described as a set of skills that are generated according to
the type of tasks and/or activities (Soler et al., 2018; Quiroga & Lara,
2023). Thus, when the student is at a deep focus level, he/she has the ability
to regulate his/her own process, adequately manages information, establishes a
strategic plan of multiple actions and operations to learn in depth (Lv et al.,
2022; Simón et al., 2023).
The
aim of this research is to analyze the association between attitudes towards
mathematics and learning approaches in a group of university students of
Pedagogy at a public university in Lima-Peru. No research has
been found that associates both variables; however, it seems that they coincide
in the formation and development of thinking. On the one hand, attitudes are
positive or negative representations about an object and are built from
interactions between personal experiences and the influences of experiences
with others (Prada-Núñez et al., 2022). On the other hand, approaches are
created through learning activities and are associated with personal and
environmental factors to a lesser extent, so it is expected to find positive associations
that allow building bridges to strengthen student learning.
1. Methodology
The
research process was developed from the quantitative approach with descriptive
and correlational design. The purpose of these designs is to describe the
behavior of each variable in the same sample and subsequently measure the
association between them (Huaire et al., 2022). That is, the design meets the
objectives of the study which was to analyze the association between attitudes
towards mathematics and learning approaches in university students.
The
sampling was probabilistic of simple random type in which 228 Pedagogy students
of both sexes participated (219 females and 9 males), with a mean of 21.46, all
belonging to a public university in Metropolitan Lima, Peru.
Two
instruments were used to collect data. The first, was the Scale of Attitudes
towards Mathematics, proposed by Auzmendi (1992) and validated by Hurtado
(2011), for Peruvian samples. This instrument consists of 25 items with five
factors: Usefulness, liking, motivation, confidence and anxiety. Regarding
standardization, it has a Cronbach's alpha of 0.797.
The
second instrument, was the Revised Questionnaire of Study Processes (R-CPE-2F),
developed by Biggs, Kember & Leung (2001), validated and adapted to
Peruvian and Argentine samples by Freiberg-Hoffman, Merino-Soto et al. (2021).
This instrument is composed of two dimensions: Deep focus and surface focus,
each with 10 items. As for standardization, it has a Cronbach's Alpha of 0.828
for the general instrument; for deep focus 0.925 and for surface focus 0.904.
The
data were collected using the Google Forms form in which alternatives were
consigned to establish voluntary participation in the study by the students, as
a criterion of compliance with the ethical aspect of the research. Once all the
data were collected, they were analyzed statistically using SPSS software
version 26.
2. Results
and discussion
To
present the results, a frequency and percentage analysis of the variable
attitude towards mathematics and its dimensions was made (see Table 1).
Attitudes are defined as the student's conscious predisposition towards
mathematics; therefore, they can be negative or positive depending on the
feeling they are causing. In general, students show a regular attitude towards
this subject, so it is important to improve this aspect in order to have a
better academic level. At the level of dimensions, most of the participants
feel that the mathematics course is useful for their professional training.
They also feel that they like it, so they have good motivation and confidence
to learn. However, it is evident that it generates anxiety, which is an
indicator that teaching should be improved.
Table 1
Levels of attitude towards
mathematics and their dimensions
|
Attitude towards mathematics |
Usefulness |
Pleasure |
Motivation |
Confidence |
Anxiety |
|
Low |
Count |
13 |
13 |
59 |
32 |
25 |
14 |
% of total |
5.7% |
5.7% |
25.9% |
14.0% |
11.0% |
6.1% |
|
Medium |
Count |
193 |
165 |
133 |
167 |
102 |
203 |
% of total |
84.6% |
72.4% |
58.3% |
73.2% |
44.7% |
89.0% |
|
High |
Count |
22 |
50 |
36 |
29 |
101 |
11 |
% of total |
9.6% |
21.9% |
15.8% |
12.7% |
44.3% |
4.8% |
|
Total |
Count |
228 |
228 |
228 |
228 |
228 |
228 |
% of total |
100% |
100.0% |
100.0% |
100.0% |
100.0% |
100.0% |
Source: Own
elaboration, 2024.
Learning
approaches have to do with the ways in which students conceive this activity,
although they are influenced by the characteristic of the task and/or activity
itself and also by the context. The approaches were analyzed considering the
frequency and percentages at the general level, as well as their dimensions.
The results show that the students have a defined learning approach since they
demonstrate a high level. As for the superficial approach, it seems that this
is the lowest, since most of them are located in the deep learning approach
(see Table 2).
Table 2
Levels of learning approaches and their dimensions
|
|
Superficial learning approaches |
Deep learning approaches |
Learning approaches |
Low |
Count |
69 |
9 |
12 |
% of total |
30.3 |
3.9 |
5.3 |
|
Medium |
Count |
136 |
94 |
183 |
% of total |
59.6 |
41.2 |
80.3 |
|
High |
Count |
23 |
125 |
33 |
% of total |
10.1 |
54.8 |
14.5 |
|
Total |
Count |
228 |
228 |
228 |
% of total |
100.0 |
100.0 |
100.0 |
Source: Own
elaboration, 2024.
Regarding
the inferential results (see Table 3), the results are very relevant in terms
of the model used, since they show varied correlations among the variables and
among the dimensions. In principle, it is evident that there is a significant
direct relationship between learning approaches and students' attitudes towards
mathematics; that is, being oriented by a certain approach has positive
repercussions on students' attitudes. Moreover, approaches are positively
related to two dimensions of attitudes: usefulness and motivation. As for the
superficial approach, it has a greater relationship with motivation towards
mathematics and with the anxiety generated by learning the subject.
Table 3
Correlations between variables and their dimensions
|
Learning
Approach |
Pleasure |
Usefulness |
Motivation |
Confidence |
Anxiety |
Superficial
Approach |
|
Attitude towards mathematics |
Correlación de
Pearson |
0,445** |
|
|
|
|
|
|
Sig. (unilateral) |
0,000 |
|
|
|
|
|
|
|
Learning Approach |
Correlación de
Pearson |
1 |
|
|
|
|
|
|
Sig. (unilateral) |
|
|
|
|
|
|
|
|
Enjoyment |
Correlación de
Pearson |
0,192** |
1 |
|
|
|
|
|
Sig. (unilateral) |
0,002 |
|
|
|
|
|
|
|
Usefulness |
Correlación de
Pearson |
0,395** |
0,395** |
1 |
|
|
|
|
Sig. (unilateral) |
0,000 |
0,000 |
|
|
|
|
|
|
Motivation |
Correlación de
Pearson |
0,376** |
0,062 |
0,381** |
1 |
|
|
|
Sig. (unilateral) |
0,000 |
0,174 |
0,000 |
|
|
|
|
|
Confidence |
Correlación de
Pearson |
0,197** |
0,514** |
0,431** |
0,153* |
1 |
|
|
Sig. (unilateral) |
0,001 |
0,000 |
0,000 |
0,010 |
|
|
|
|
Anxiety |
Correlación de
Pearson |
0,313** |
0,222** |
0,331** |
0,307** |
0,239** |
1 |
|
Sig. (unilateral) |
0,000 |
0,000 |
0,000 |
0,000 |
0,000 |
|
|
|
Superficial Approach |
Correlación de
Pearson |
0,590** |
0,084 |
0,196** |
0,329** |
0,069 |
0,207** |
1 |
Sig. (unilateral) |
0,000 |
0,103 |
0,001 |
0,000 |
0,148 |
0,001 |
|
|
Deep Focus |
Correlación de
Pearson |
0,463** |
0,236** |
0,309** |
0,304** |
0,303** |
0,243** |
0,081 |
Sig. (unilateral) |
0,000 |
0,000 |
0,000 |
0,000 |
0,000 |
0,000 |
0,111 |
|
N |
228 |
228 |
228 |
228 |
228 |
228 |
228 |
Source: Own
elaboration, 2024.
On the
other hand, the deep approach to learning is positively related to the
dimensions of usefulness, motivation and confidence towards learning
mathematics. That is, this approach to learning is oriented both to the
cognitive knowledge of the subject and to affective aspects, since affectivity
plays an important role in learning.
The
results indicate that students show a favorable attitude towards mathematics at
a general level and in its dimensions. These results are concordant with reports
from other studies (Flores & Auzmendi, 2018; Ramírez-Cruz,
López-Mojica & Aké, 2018; Rojas, 2020), who found similar responses
in research with university students. Consequently, it can be affirmed that
there are positive tendencies towards cognitive, behavioral and affective
components towards mathematics (López-Mojica et al., 2021). Thus, many students
consider mathematics to be important for life, but, at the same time, they
attribute little value to it in their professional training (Ramírez-Cruz et
al., 2018).
Likewise,
in learning approaches, students, for the most part, present a medium level,
data that agrees with other findings (González-Marcos et al., 2021; Mercado-Guerra, Calderón-Carvajal & Palominos-Urquieta,
2022), that reported the predominance of a deep learning approach in university
students, which is due to the fact that students face tasks in a particular
way, making use of strategies that include motivations, intentions and
behaviors (Speth, Namuth & Lee, 2007), as well as the context, in which the
teacher plays an important role (Kember, Leung & McNaught, 2008; Romero et
al., 2013). On the contrary, those students who are not at a deep focus level
would be those who have difficulties in deepening knowledge and rely on literal
reproduction of information (Romero et al., 2013).
At the
inferential level, the reports show that there is a positive relationship
between attitudes towards mathematics and learning approaches. Although there
is no previous empirical evidence on the association between these variables,
the data would have to do with what the student himself does and very little
with external influences. That is, it would be due to the nature of learning
and attitudes that are modifiable and adaptable to the context (Romero et al.,
2013). In this case, Gamboa & Moreira-Mora (2016) state that attitudes
towards mathematics are not related to the didactic tendencies of teachers, but
to the predisposition of each student to learn the course. For López &
López (2013), in the development of learning approaches, the responsibility for
learning lies with the student and not with the teacher when presenting the
task.
Attitudes,
for Mujica (2022), are representations of thought, which can be positive or
negative and are built from interactions between personal experiences and the
influences of experiences with others (Prada-Núñez
et al., 2022), which has to do with feelings, beliefs and behaviors (Orjuela et
al., 2019). While learning approaches are created by learning activities and
are associated with motivational factors (Soler et al., 2018), course liking
(Rojas-Kramer et al., 2017), confidence (Flores & Auzmendi, 2018),
strategies used (Soler et al., 2018) or career choice.
In the
context of the dimensions, a direct relationship was found between motivation
and anxiety with surface approach. These results are in line with the findings
of García, Guzmán & Monje (2023),
who found that very high levels of mathematics anxiety are negatively related
to self-confidence, which leads to poor academic performance. That is, low
performance in the course is directly related to the superficial approach (Freiberg-Hoffmann, Vigh & Fernández-Liporace, 2021).
This type of learning causes difficulty and anxiety before the course (Cardoso,
2019), scarce time, dedication and effort towards learning the subject
(Ramudo-Andion et al., 2020), usually present at the beginning of the training
(Ramírez-Cruz et al., 2018).
On the
other hand, a positive relationship has been found between usefulness,
motivation and confidence towards mathematics and deep learning approach. These
findings are concordant with the reports of Flores & Auzmendi (2018); Simón
et al. (2023); and Hernández-Dzib & Euan-Mex (2023), who argue that
students who present this type of learning have a valuable tool to construct
meaningful learning and metacognitive strategies. Furthermore, this positive
association would mean that students are able to establish analogies, solve
mathematical problems, adequately explain a practical procedure, be creative
and critical at the same time (James et al., 2022; Lv et al., 2022), without
leaving aside the role of the teacher, who guides learning, but it is the
student who contextualizes and accommodates to his/her context, so it is part
of the so-called new pedagogies (Quiroga & Lara, 2023).
Conclusions
Attitudes,
as well as learning approaches, are predispositions of the student to develop
his or her own thought processes. The evidence is that the superficial approach
to learning has a negative relationship with academic success, since it is
oriented towards rote, literal learning with little depth. Therefore, it is
necessary to move towards the deep approach to learning, since it generates
better academic results.
When
students opt for the deep approach, they develop a set of cognitive skills and
strategies such as planning learning, managing resources, organizing time
adequately, selecting motivational strategies, among others. In addition, the
deep approach involves achieving reflective processes, develops critical
thinking, learning through analogies, which is related to mathematical
knowledge and allows them to improve attitudes towards the subject and minimize
negative attitudes towards the course.
During
the process of carrying out the study, no limitations were found, since time,
resources and access to the sample were handled without inconveniences. What is
important to analyze is that the study of learning approaches from different
perspectives and research designs should continue to be studied in depth. It is
a variable that has been little studied in this context and deserves further
study.
Bibliographic
references
Ampuero, N. (2022). Enseñanza
aprendizaje: Síntesis del análisis conceptual desde el enfoque centrado en
procesos. Revista de Ciencias Sociales (Ve), XXVIII(E-6), 126-135. https://doi.org/10.31876/rcs.v28i.38822
Auzmendi, E. (1992). Las
actitudes hacia la matemática-estadística en las enseñanzas medias y
universitarias. Características y medición. Ediciones
Mensajero.
Ávila-Toscano, J. H.,
Vargas-Delgado, L. J., Alonso-Miranda, M. F., & De La Cruz-González, J. C. (2023).
Attitudes towards mathematics in
future teachers: Eahm-u scale Colombian adaptation. Revista Electrónica Educare, 27(1), 1-18. https://doi.org/10.15359/ree.27-1.14302
Báez, J., & Onrubia, J. (2016). Una
revisión de tres modelos para enseñar las habilidades de pensamiento en el
marco escolar. Perspectiva Educacional, Formación de Profesores, 55(1),
94-113. https://doi.org/10.4151/07189729-Vol.55-Iss.1-Art.347
Bernal, M. I., Lamos, A. F.,
Vargas, O. I., Camargo, G. E., & Sanchez, N. (2019). Enfoques
de aprendizaje, rendimiento académico y factores relacionados en estudiantes
que cursan último año de los programas de la Facultad de Ciencias de la Salud. Educación
Médica, 20(S-2), 10-17. https://doi.org/10.1016/j.edumed.2017.11.008
Biggs, J. B. (1987). Student Approaches to Learning
and Studying. Australian Council for Educational Research.
Biggs, J., Kember, D., & Leung,
D. Y. P. (2001). The revised two-factor Study Process Questionnaire: R-SPQ-2F. British
Journal of Educational Psychology, 71(1),
133-149. https://doi.org/10.1348/000709901158433
Cardoso, E. O. (2019). Las
actitudes hacia las matemáticas de estudiantes de formación inicial de
profesorado en México. Revista de Psicología
y Ciencias del Comportamiento de la Unidad Académica de Ciencias Jurídicas y
Sociales RPCC, 10(1), 87-103. https://doi.org/10.29059/rpcc.20190602-83
Duarte-Sepúlveda,
L. C., Ricardo-Quiñones, N., & Santos-López, L. V. (2018). Dominio afectivo
de los estudiantes de educación media hacia las matemáticas. Revista
Perspectivas, 3(2), 60-71. https://doi.org/10.22463/25909215.1589
Flores, W. O., & Auzmendi, E. (2018).
Actitudes hacia las matemáticas en la enseñanza universitaria y su relación con
las variables género y etnia. Profesorado. Revista de Currículum y Formación
de Profesorado, 22(3), 231-251. https://doi.org/10.30827/profesorado.v22i3.8000
Freiberg-Hoffmann, A., Merino-Soto, C., Huaire-Inacio, E. J., &
Fernández-Liporace, M. (2021). The revised two factor study process
questionnaire-short version: A psychometric analysis in college students. European Journal of Education and Psychology, 14(2), 1-22. https://doi.org/10.32457/ejep.v14i2.1656
Freiberg-Hoffmann,
A., Vigh, C., & Fernández-Liporace, M. (2021). Creatividad y enfoques de
aprendizaje en estudiantes universitarios. Psicogente, 24(46), 1-17.
https://doi.org/10.17081/psico.24.46.4492
Gamboa,
R., & Moreira-Mora, T. E. (2016). Un
modelo explicativo de las creencias y actitudes hacia las Matemáticas: Un
análisis basado en modelos de ecuaciones estructurales. Avances de
Investigación en Educación Matemática, (10), 27-51. https://doi.org/10.35763/aiem.v0i10.155
Gamboa-Araya, R. (2016). ¿Es necesario profundizar
en la relación entre docente de matemáticas y la formación de las actitudes y
creencias hacia la disciplina? Uniciencia,
30(1), 57-84. http://dx.doi.org/10.15359/ru.30-1.4
García, J.,
Guzmán, M., & Monje, F. J. (2023). Estudio descriptivo de la ansiedad
matemática en estudiantes mexicanos de ingeniería. IE Revista de
Investigación Educativa de la REDIECH, 14, e1619. https://doi.org/10.33010/ie_rie_rediech.v14i0.1619
González-Marcos, A.,
Navaridas-Nalda, F., Jiménez-Trens, M. A., Alba-Elías, F., & Ordieres-Meré,
J. (2021). Efectos académicos de una enseñanza mixta versus metodología única
centrada en el profesor y enfoques de aprendizaje. Revista de Educación,
(392), 123-154. https://doi.org/10.4438/1988-592X-RE-2021-392-481
Hernández-Dzib, R. J., & Euan-Mex, N. D. C.
(2023). Motivación hacia el aprendizaje de las matemáticas mediante una
propuesta de gamificación a distancia.
Educación y Ciencia, 12(59),
79-97. http://educacionyciencia.org/index.php/educacionyciencia/article/view/691/456633
Huaire, E.
J., Herrera, A. M., Sifuentes, L. E., & Alfaro, M. N. (2023). Retorno a la
presencialidad: Actitudes de los universitarios peruanos hacia el aprendizaje y
pos-crisis sanitaria. Revista de Ciencias Sociales (Ve), XXIX(E-7), 187-196. https://doi.org/10.31876/rcs.v29i.40457
Huaire, E. J., Marquina, R. J., Horna, V. E.,
Llanos, K. N., Herrera, Á. M., Rodríguez, J., & Villamar, R. M. (2022). Tesis
fácil: El arte de dominar el método científico. Analética.
Huaire, E. J., & Arteta, H. A. (2018). Diferencias en las concepciones sobre el aprendizaje que
adoptan los estudiantes de una universidad privada y una pública de Lima. Psiencia. Revista Latinoamericana de
Ciencia Psicológica, 10(2).
Hurtado, L. (2011). Validación de una escala de
actitudes hacia las matemáticas. Investigación
Educativa, 15(28), 99-108. https://revistasinvestigacion.unmsm.edu.pe/index.php/educa/article/view/5401
James, M., Teixeira, A. M.,
Barnabas, D., Sadza, A., Smith, S., Usmani, O., & John, C. (2022).
Collaborative case-based learning with programmatic team-based assessment: A
novel methodology for developing advanced skills in early-years medical
students. BMC Medical Education, 22(1). https://doi.org/10.1186/S12909-022-03111-5
Kember, D., Leung,
D. Y. P., & McNaught, C. (2008). A workshop activity to demonstrate that
approaches to learning are influenced by the teaching and learning environment.
Active Learning in Higher Education, 9(1), 43-56. https://doi.org/10.1177/1469787407086745
López, M., & López, A. I. (2013). Los enfoques de aprendizaje. Revisión
conceptual y de investigación. Revista Colombiana de Educación, (64),
131-153. https://revistas.upn.edu.co/index.php/RCE/article/view/1837
López-Mojica, J. M., García-García,
J. I., Ramírez, J. C., & Arredondo, E. H. (2021). Exploración de las
actitudes hacía las matemáticas de futuros profesores de educación especial. Tecné,
Episteme y Didaxis: TED, (50), 95-112.
Lv, S., Chen, C.,
Zheng W., & Zhu, Y. (2022). The relationship between study engagement and
critical thinking among higher vocational college students in China: A longitudinal
study. Psychology Research and Behavior Management, 15, 2989-3002. https://doi.org/10.2147/PRBM.S386780
Marton, F., & Säljö, R. (1976). On qualitative differences in learning: I. Outcome and
process. British Journal of Educational
Psychology, 46(1), 4-11. https://doi.org/10.1111/j.2044-8279.1976.tb02980.x
Mercado-Guerra,
J., Calderón-Carvajal, C., & Palominos-Urquieta, D. (2022). Learning approaches in teacher education
students at a Chilean university. Formación Universitaria, 15(3), 33-42. https://dx.doi.org/10.4067/S0718-50062022000300033
Meza-Cascante, L. G., Agüero-Calvo, E., Suárez-Valdés-Ayala,
Z., Calderón-Ferrey, M., Sancho-Martínez, L., Pérez-Tyteca, P., & Monje-Parrilla, J. (2019).
Actitud hacia la matemática: Percepción
de la actitud de padres. Revista
Comunicación, 28(1), 4-15. https://doi.org/10.18845/rc.v28i1-2019.4437
Mujica, A. M. (2022). Actitudes hacia las
matemáticas: El caso de tituladas de la carrera de Educación Parvularia. Revista
Conrado, 18(89), 18-27. https://conrado.ucf.edu.cu/index.php/conrado/article/view/2701
Orjuela, C. P., Hernández, R., & Cabrera,
L. M. (2019). Actitudes hacia la matemática: algunas consideraciones en su
relación con la enseñanza y el aprendizaje de la misma. Revista de Educación
Matemática, 34(2), 23-38. https://doi.org/10.33044/revem.25287
Pérez, A. F., Méndez, C. J., & Pérez, P. (2020).
Enfoques de aprendizaje y rendimiento académico en la educación superior. Perspectivas
Docentes, 30(71), 19-30. https://doi.org/10.19136/pd.a30n71.3060
Prada-Núñez, R., Fernández-Cézar,
R., & Jardey-Suárez, O. (2022). Predisposición evaluativa hacia las
matemáticas de docentes en formación en contextos geográficos de frontera. Revista
Perspectivas, 7(S-1), 30-41. https://doi.org/10.22463/25909215.3985
Quiroga, L., &
Lara, E. (2023). El aprendizaje profundo como herramienta para cambio en la
visión de aprendizaje de una cultura escolar. Revista Educación Las Américas,
12(1). https://doi.org/10.35811/rea.v12i1.201
Ramírez-Cruz, J. C.,
López-Mojica, J. M., & Aké, L. P. (2018). Importancia de las matemáticas en
la formación inicial de profesionistas de la educación especial. Atenas,
3(43), 100-114.
Ramudo-Andion, I., Barca-Enriquez, E.,
Brenlla-Blanco, J. C., Peralbo-Uzquiano, M., & Barca-Lozano, A. (2020).
Predicción del rendimiento académico del alumnado de Bachillerato: Efecto de
los enfoques de aprendizaje y atribuciones causales. Revista de Psicología y
Educación, 15(2), 108-120, https://doi.org/10.23923/rpye2020.02.190
Rojas, J. A. (2020). Estilos
de aprendizaje y actitudes hacia la matemática en estudiantes del POLISAL de la
UNAN-Managua. Revista Torreón Universitario, 8(23), 37-47. https://camjol.info/index.php/torreon/article/view/9531
Rojas-Kramer, C. A.,
Escalera-Chávez, M. E., Moreno-García, E., & García-Santillán, A. (2017).
Motivación, ansiedad, confianza, agrado y utilidad. Los factores que explican
la actitud hacia las matemáticas en los estudiantes de economía. Revista INFAD de Psicología.
International Journal of Developmental and Educational Psychology, 2(1), 527-540. https://doi.org/10.17060/ijodaep.2017.n1.v2.875
Romero, A., Hidalgo, M. D., González, F.,
Carrillo, E., Pedraja, M. J., García, J., & Pérez, M. A. (2013). Enfoques
de aprendizaje en estudiantes universitarios: Comparación de resultados con los
cuestionarios ASSIST y R-SPQ-2F. Revista de Investigación Educativa, 31(2),
375-391. http://dx.doi.org/10.6018/rie.31.2.151851
Santiago-Lopez, C., & Farfán-Pimentel, J. F.
(2023). Aprendizaje autónomo y actitudes hacia las matemáticas en estudiantes
de contabilidad y finanzas de la Universidad de San Martín de Porres. ReHuSo, 8(1), 65-79. https://doi.org/10.33936/rehuso.v8i1.5256
Simón, N., Del Valle, S.,
Rioja, N., & Cuadrado, J. (2023). Evaluación del aprendizaje profundo
metacognitivo y autodeterminado en estudiantes universitarios. Retos, 48,
861-872. https://doi.org/10.47197/retos.v48.93421
Soler, M. G., Cárdenas, F. A., & Hernández-Pina,
F. (2018). Enfoques de enseñanza y enfoques de aprendizaje: perspectivas
teóricas promisorias para el desarrollo de investigaciones en educación en
ciencias. Ciência
& Educação (bauru), 24(4), 993-1012. https://doi.org/10.1590/1516-731320180040012
Speth, C. A., Namuth, D. M., &
Lee, D. J. (2007). Using ASSIST short form for evaluation an information
technology application: Validity and Reliability issues. Informing Science
Journal, 10, 107-119. https://doi.org/10.28945/459
Zamora,
Á., Gil, J., & De Besa, M. R. (2020). Enfoques de aprendizaje y perspectiva
temporal: Persistencia en estudiantes universitarios. Educación XX1, 23(2), 17-39. https://doi.org/10.5944/educxx1.25552
* Doctora
en Ciencias de la Educación. Magister en Didáctica de la Ciencias Sociales.
Licenciada en Educación Inicial. Docente en la Universidad Privada Norbert
Wiener, Lima, Perú. E-mail: amheal1212@gmail.com
ORCID: https://orcid.org/0000-0002-6399-3850
** Doctor en Ciencias de la
Educación. Magister en Problemas de Aprendizaje. Licenciado en Lengua y
Literatura. Docente de la Carrera de Comunicaciones de la Facultad de
Comunicación en la Universidad San Ignacio de Loyola, Lima, Perú. E-mail: jmcuval@hotmail.com ORCID: https://orcid.org/0000-0002-8393-5762
*** Candidata a Doctor en Estadística
Matemática. Magister en Ciencias con mención en Estadística Aplicada.
Licenciada en Estadística e Informática. Docente Auxiliar en la Universidad
Nacional Mayor de San Marcos, Lima, Perú. E-mail: kllanosm@unmsm.edu.pe
ORCID: https://orcid.org/0000-0002-6480-0408
**** Magíster en Ciencias con mención en Estadística
Aplicada. Ingeniero Estadístico. Docente Auxiliar Tiempo Completo de la
Facultad de Ciencias Empresariales en la Universidad San Ignacio de Loyola,
Lima, Perú. E-mail: ecerna@usil.edu.pe ORCID: https://orcid.org/0000-0002-0755-5354
Recibido: 2024-06-22 · Aceptado: 2024-09-09