
DEPÓSITO LEGAL ppi 201502ZU4666

 Esta publicación científica en formato digital
es continuidad de la revista impresa

ISSN 0041-8811
DEPÓSITO LEGAL pp 76-654

Revista

de la

Universidad

del Zulia
Fundada en 1947

por el Dr. Jesús Enrique Lossada

Ciencias

Exactas

Naturales

y de la Salud

 Año 10 N° 27
 Mayo - Agosto 2019

 Tercera Época

 Maracaibo-Venezuela

REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3 época. Año 10 N° 27, 2019
Alexey Martyshkin/// Software complex for measuring…108-117

108

Software complex for measuring operating systems’ main
functions performance

Alexey I. Martyshkin *

ABSTRACT
This paper describes the software package created by the author for measuring the

performance of operating system functions. This work aims to synthesize a software

package designed to analyse the execution time of software functions of uniprocessor and

multiprocessor operating systems. The package analyses a number of functions of operating

systems: mutexes, semaphores, read-write locks, FIFO and PIPE channels, TCP and UDP

sockets, context switching, system calls. Unlike analogues, this package is represented by a

convenient graphical user interface; the Qt and Qwt libraries are used for its

implementation, they have a rich set of widgets, i.e. programs that facilitate access to

information. The libraries used are cross-platform, which allows us to make a simpler

procedure for transferring applications to different operating systems; smoothing the test

results curves is used. In conclusion, the results of test measurements are presented.

KEYWORDS: Linux, performance measurement, operating system functions, QT and QWT

libraries, C ++ language.

Paquete de software para medir el rendimiento de las funciones
principales de los sistemas operativos

RESUMEN

Este documento describe el paquete de software creado por el autor para medir el

rendimiento de las funciones del sistema operativo. Este trabajo tiene como objetivo

sintetizar un paquete de software diseñado para analizar el tiempo de ejecución de las

funciones de software de los sistemas operativos uniprocesador y multiprocesador. El

paquete analiza una serie de funciones de los sistemas operativos: mutexes, semáforos,

bloqueos de lectura y escritura, canales FIFO y PIPE, zócalos TCP y UDP, cambio de

contexto, llamadas al sistema. A diferencia de los análogos, este paquete está representado

por una conveniente interfaz gráfica de usuario; las bibliotecas Qt y Qwt se utilizan para su

implementación, tienen un amplio conjunto de widgets, es decir, programas que facilitan el

acceso a la información. Las bibliotecas utilizadas son multiplataforma, lo que nos permite

hacer un procedimiento más simple para transferir aplicaciones a diferentes sistemas

operativos; se utiliza el suavizado de las curvas de resultados de la prueba. En conclusión, se

presentan los resultados de las mediciones de prueba.

PALABRAS CLAVE: Linux, medición de rendimiento, funciones del sistema operativo,

bibliotecas QT y QWT, lenguaje C ++.

*Candidate of Technical Sciences, Associate Professor, Computational Machines and
Systems Department, Penza State Technological University (440039, Russia, Penza, 1/11
Baydukova passage / Gagarina st., 1/11 e-mail: alexey314@yandex.ru)

Recibido: 30/07/2019 Aceptado: 11/09/2019

REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3 época. Año 10 N° 27, 2019
Alexey Martyshkin/// Software complex for measuring…108-117

109

Introduction

The goal was set to develop a software package designed to analyse the execution

times for software functions of uniprocessor and multiprocessor operating systems. The

performance measurement for various functions of an operating system is necessary not

only for the operating system developers to evaluate the effectiveness of the implementation

of a particular function and to compare the performance of its implementation in other

operating systems, but also for application programmers (Biktashev and Martyshkin, 2013),

who need to measure the performance of the operating system functions to select the most

suitable implementation for their projects (especially for large software systems projects)

(Ivanov et al., 2017; Skvortsov and Pyurova, 2016). Implementations of the same operating

system functions can significantly differ in different operating systems both in performance

and in the ways of working with them (Duplenko, 2013 a,b). For this reason, a developer

can select the most preferred tools for development in a specific operating system, or vice

versa - choose an operating system in which the implementation of these functions most

optimally meets the requirements of the designed software.

1. Formulation of the problem

The software package should perform testing of operating system functions, such as:

- Means for synchronizing processes (threads): mutual exceptions (mutexes),

semaphores, read-write locks;

- Means of interprocess exchange: named FIFO channels, unnamed PIPE channels,

TCP and UDP sockets;

- Context switching;

- System calls (read, write, open, close).

Currently, the software package Lmbench is widely used, which allows testing nix-

compatible systems, incorporating a wide range of tests for various operating system

subsystems (Stevens, 2003, 2007). The Lmbench composition includes tests for

determining the following characteristics:

a) interprocess exchange means; b) means for synchronizing processes (threads); c)

system calls; d) context switching.

REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3 época. Año 10 N° 27, 2019
Alexey Martyshkin/// Software complex for measuring…108-117

110

This package allows its user to get a fairly holistic view of the tested operating

system, to identify the strengths and weaknesses of the implementation of specific

functions. But, on the other hand, the Lmbench package does not have a graphical interface

and each type of testing is presented by a separate program that must be launched from the

command line with some arguments passed.

From the foregoing, it is clear that the LMbench package has a number of drawbacks

that make working with it inconvenient, requiring repeated repetition of the same actions

and additional calculations to obtain results. Repeatedly invoking the testing program also

makes the testing procedure with Lmbench a cumbersome, time-consuming procedure.

Thus, the software package developed for testing the operating systems’ functions makes

the testing work more convenient, more productive, and affordable than the LMbench

software package.

For the development of a software package, tasks that are supposed to be solved

with its help are specified: 1) Selection of the tested functions; 2) Collection of test results;

3) Processing the results; 4) Displaying the received statistics in the form of graphs; 5)

Displaying the results in a separate window; 6) Colour settings for displaying data; 7)

Smoothing charts. Analysing the set tasks, we conclude about the input and output data of

the developed software package. Input data are: a) name of the tested function; b) a colour

palette for displaying results; Output data are: a) Graphs of the results obtained; b) Display

of results that do not require presentation in the form of graphs.

Fig. 1. The operation algorithm of the developed software package

REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3 época. Año 10 N° 27, 2019
Alexey Martyshkin/// Software complex for measuring…108-117

111

The objectives of the study are:

- to determine the composition of U-functions (the software function of the

operating system

kernel associated with any system call) that implement the network and transport

levels;

- to measure the execution time of each U-function in the process of transmitting

data blocks;

- to determine the probabilistic characteristics of the call and processing of U-

functions;

- to determine the dependences of the probability-time characteristics that

determine the computation system performance depending on the traffic parameters and

the characteristics of network devices.

Network protocols are implemented programmatically in the operating system

kernel as a set of U-functions.

Since these protocols are implemented in software, the performance of the network

and transport layers of the OSI network model can be measured using software tools. To do

this, we can use software monitors (Martyshkin, 2016a; Martyshkin et al, 2018a).

Monitors of the tracer type (tracers) are programs that record the specified

parameters of the computing process at specific points. Each such point corresponds to a

specific event in the work of the computation system, and when it passes, a transmission is

organized to the measurement monitor programs that collect, accumulate and display

measurement information.

2. Mathematical model of work with semaphores

Semaphores are used to coordinate the use of single or fixed sets of resources by several

computational processes. The semaphore performance problem is that when processes

interact, there are requirements for access to shared resources that lead to a collision of

transactions, as they conflict with each other. Conflicts lead to loss of operating system

REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3 época. Año 10 N° 27, 2019
Alexey Martyshkin/// Software complex for measuring…108-117

112

performance (Martyshkin, 2018, 2016b). This is most characteristic in parallel and

multiprogram systems when interacting processes are implemented in independent

processors which may require a common resource at the same time. If the resource is

required by too many processes, then they are queued. At the same time, requests are

satisfied on the basis of: “first in, first out” principle (FIFO) (Martyshkin et al, 2018b;

Tanenbaum and Bos, 2015).

We assume that a computer system comprises a common resource available to the set of

processes executed in the nodes and n –processor nodes protected by a semaphore S. An

analytical model of an n-processor system with a single shared resource for evaluating

performance losses due to conflicts over access to the semaphore, using such scheduling

concept as FIFO, is shown in Fig. 2 a. The model is presented as an open stochastic queuing

network consisting of n (S 1,. .., S n) queuing systems simulating processor nodes and a

single-channel queuing system (S n +1) which simulates a semaphore. A thread of requests

for the execution of processes with intensity 0 1/T  arrives at the input of the n-processor

system where T is the average duration of the interval between incoming requests

(Martyshkin, et al., 2018a).

a) b)

 ЦП - CPU

Fig. 2. Diagram of the analytical model of the n-processor system (a) and its flow graph (b)

The request flow is distributed by the preliminary scheduler to the processor nodes

with probabilities p 01,. .., p on, presented in the form of a probability flow graph for the

stochastic network shown in Fig. 2, b. We suppose that the flows of requests for the

execution of processes at the input of a multiprocessor system are distributed equally

REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3 época. Año 10 N° 27, 2019
Alexey Martyshkin/// Software complex for measuring…108-117

113

between processor nodes, i.e. p 01 =. .. = p on = 1 / n. Requests that have been served in the

semaphore are an equally likely return to the processor nodes for continued service,

therefore, p n + 1, 1 =. .. = p n + 1, n = 1 / n.

The waiting time for a request in the network is estimated by

1 1 2 2 1 1... ,w w w n wn n wnT t t t t          (1)

Where
0

i
i





 is the network transmission coefficient (i = 1,. .., n +1); wit is the

waiting time in the i-th queuing system. The intensity of request flows is determined by the

system of equations:
0

n

i ij j

i

p 


 , where ijp is the probability of transmission from the

queuing system iS in the queuing system jS ; i, j = 0,1,. .., n + 1

Priority-based scheduling yields almost twice advantage as to waiting time in a

queue for a semaphore than using a FIFO- based strategy. The obtained models allow us to

make quantitative estimates of the waiting time of processes accessing a shared resource

through a semaphore. The models can be used in the designing of parallel operating

systems, where the execution time of processes is critical (Martyshkin, 2018).

3. Architecture of the software and hardware package

Work with software package was carried out on a computer running an operating

system of the Linux family. To ensure the operability of the program, a nix-compatible

operating system with installed Qt and Qwt libraries is required. Having analysed the data

on the advantages and disadvantages of modern programming languages, we can conclude

that it is most advisable to use the C ++ language to solve the problems posed for a number

of the following reasons: support for the paradigm of object-oriented programming, high

performance of final programs, etc.

The data structure of the developed software package is shown in Fig. 3. The scheme

of the main program algorithm is shown in Fig.4.

REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3 época. Año 10 N° 27, 2019
Alexey Martyshkin/// Software complex for measuring…108-117

114

4. Program development

In accordance with RAD technology, we outline three stages in the development of

the software package:

1) development of a graphical interface for user interaction with the program; 2) the

2) development of functional modules that solve the tasks specified in the

Development Task;

3) binding the implementation of the functional part to the graphical interface.

The basis of the future user interface is a multi-window interface. Separate windows

are created for various problems to be solved, providing an unloaded interface that is

necessary for their solution (Rodríguez et al., 2007; Williams, 2014; Hughes and Hughes,

2004).

In the developed software package, the curve smoothing (filtering) is used.

Smoothing is a technology used to eliminate the “jagged” effect that occurs at the edges of a

multitude of 2D or 3D images that are displayed separately from one another at the same

time. Almost all normal graphics are offered in two forms: raw and smooth. A graph can be

built in a straightforward manner from message to message, why it will have angular

outlines. But if smoothing is selected, then the graph will have a smoother outline. The

REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3 época. Año 10 N° 27, 2019
Alexey Martyshkin/// Software complex for measuring…108-117

115

smoothing level and algorithm are the same for all graphs. Smoothing is performed using

several consecutive data, and their number is usually selected experimentally.

Figs. 5-6 show the graphs of test results (semaphore and context switching).

Fig. 5. Semaphore test: setting parameters (a), without smoothing (b), and using the most
probable smoothing (c). Fig. 6. Context switching time test: setting parameters (a) without
smoothing (b) and using the most probable smoothing (c)

REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3 época. Año 10 N° 27, 2019
Alexey Martyshkin/// Software complex for measuring…108-117

116

The software package developed is registered with the Federal Service for

Intellectual Property.

Conclusions

The software package was developed to test the operating system functions:

mutexes, semaphores, read-write locks, FIFO and PIPE channels, TCP and UDP sockets,

context switching, system calls (read, write, open, close). After selecting the type of testing,

the software package allows us to automatically collect the necessary statistics, process it

and display the processing results in a user-friendly form.

Unlike analogues, this package is represented by a convenient graphical user

interface, for the implementation of which the Qt and Qwt libraries are used. These

libraries have a rich set of widgets, i.e. programs that facilitate access to information, with

which we can create a complex graphical interface. The libraries used are cross-platform,

which makes it easier to transfer requests to different operating systems.

Acknowledgements

The paper is published with the support of the scholarship granted by the President

of the Russian Federation to young scientists and graduate students for 2018-2020. (SP-

68.2018.5).

References

Biktashev R.A., Martyshkin A.I. (2013). A set of programs for measuring the performance of
operating system functions // XXI Century: Results of the past and problems of the present
plus. 2013. No. 10 (14). Pp. 190–197.

Duplenko A.G. (2013a). Comparative analysis of data sorting algorithms in arrays // Young
scientist. 2013. No. 8. Pp. 50-53.

Duplenko A.G. (2013b). Evolution of methods and algorithms for sorting data in arrays //
Young Scientist. 2013. No. 9. Pp. 17-19.

Hughes C., Hughes T. (2004). Parallel and distributed programming using C ++. 2004.672
p.

Ivanov K.K., Razdobudko S.A., Kovalev R.I. (2017). Parallel sorting methods // Young
scientist. 2017. Number 7. Pp. 15-16.

Martyshkin A. I. (2016a). Modern methods of measuring the performance of multicore
computing systems // New Information Technologies and Systems: Collection of scientific
papers of the XIII International Scientific and Technical Conference. 2016. Pp. 128 - 131.

REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3 época. Año 10 N° 27, 2019
Alexey Martyshkin/// Software complex for measuring…108-117

117

Martyshkin A. I. (2016b). Semaphore performance problems in parallel systems //
Collection of papers of the International scientific-practical conference: in 3 parts. 2016. Pp.
81-83.

Martyshkin A. I. (2018). Mathematical models of semaphores for coordinating access to
shared resources of multiprocessor systems // Colloquium-journal.No. 8 (19). part 1. 2018.
Pp. 36-39.

Martyshkin A.I., Markin E.I., Tereshkin D.O., Razdobudov S.A. (2018a). Analytical models
for evaluating the performance of semaphores of multiprocessor systems // Collection of
papers of the XII International Scientific and Practical Conference: in 2 parts. 2018. Pp. 78-
81.

Martyshkin A.I., Markin E.I., Zotkina A.A., Razdobudov S.A. (2018b). Modern methods of
measuring the performance of multi-core systems with HT technology // collection of
papers of the XXV International scientific and practical conference.2018. Pp. 50-52.

Razdobudov S. A., Salnikov I. I. (2018). Research and analysis of the possibility of
multithreading when developing software in C ++ // International Student Scientific
Herald.2018. No. 3-2. Pp. 334-337.

Rodriguez C.Z., Fisher G., Smolsky S. (2007). Linux. ABC core. - Kudits Press, Moscow,
2007.584 p.

Skvortsov S.V., Pyurova T.A. (2016). Parallel data sorting algorithms and their
implementation on the CUDA platform // Vestnik RGRTU. 2016. No. 58. Pp.42-48.

Stevens U.R. (2007). UNIX : developing network requests. Peter, 2007.1039 p .

Stevens U.R. (2003). UNIX : process interconnection. Peter, 2003.576p.

Tanenbaum E., Bos H. (2015). Modern Operating Systems. 4th ed. SPb. : Peter, 2015.1120 p. :
ill. (Series "Classic computer science").

Williams E. (2014). Parallel programming in C ++ in action. The practice of developing
multi-threaded programs. DMK Press, 2014, 672 p.

