REVISTA DE LA UNIVERSIDAD DEL ZULIA. 3ª época. Año 12 N° 32, 2021
Diego Alejandro Pulache Celi et al. // Atributos de penetración de calor en langostinos… 114-126
DOI: http://dx.doi.org/10.46925//rdluz.32.09
124
Hong, Y.-K.; Huang, L.; Yoon, W. B.; Liu, F.; Tang, J. 2016. Mathematical modeling and
Monte Carlo simulation of thermal inactivation of non-proteolytic Clostridium botulinum
spores during continuous microwave-assisted pasteurization. Journal of Food Engineering,
190, 61–71.
IFT/FDA. 2000. Kinetics of microbial inactivation for alternative food processing
technologies. Journal of Food Science, 65, s8.
Ikegami, Y. 1974. Effect of various factors in the come-up time on processing of canned
foods with steam. Report of Toyo Institute of Food Technology (in Japanese), 11, 92–98.
Johnson, E.A. 2014. Clostridium | Clostridium botulinum. Encyclopedia of Food
Microbiology, 458–462.
Kyereme, M.; Swartzel, K.R.; Farkas, B.E. 1999. New line intersection procedure for the
equivalent point method of thermal evaluation. Journal of Food Science, 64(4), 565–570.
Li, S.; Zhilyaev, S.; Gallagher, D.; Subbiah, J.; Dvorak, B. 2019. Sustainability of safe foods:
Joint environmental, economic and microbial load reduction assessment of antimicrobial
systems in U.S. beef processing. Science of The Total Environment, 691, 252–262.
Lindström, M.; Kiviniemi, K.; Korkeala, H. 2006. Hazard and control of group II (non-
proteolytic) Clostridium botulinum in modern food processing. International Journal of
Food Microbiology, 108(1), 92–104.
Ling, B.; Tang, J.; Kong, F.; Mitcham, E.J.; Wang, S. 2014. Kinetics of food quality changes
during thermal processing: a Review. Food and Bioprocess Technology, 8(2), 343–358.
Liu, B.; Huang, Q.; Wang, P. 2020. Influence of surrounding gas temperature on
thermocouple measurement. Case Studies in Thermal Engineering, 19, 100627.
Majumdar, R.K.; Roy, D.; Saha, A. 2016. Textural and sensory characteristics of retort-
processed freshwater prawn (Macrobrachium rosenbergii) in curry medium. International
Journal of Food Properties, 20(11), 2487–2498.
Membré, J.-M.; van Zuijlen, A. 2011. A probabilistic approach to determine thermal process
setting parameters: Application for commercial sterility of products. International Journal
of Food Microbiology, 144(3), 413–420.
Miranda-Zamora, W.R.; Sanchez-Chero, M.J.; Sanchez-Chero, J.A. 2020a. Software for the
determination of the time and the f value in the thermal processing of packaged foods using
the modified ball method. Intelligent human systems integration 2020. Proceedings of the
3rd International Conference on Intelligent Human Systems Integration (IHSI 2020):
Integrating People and Intelligent Systems, February 19-21, 2020, Modena, Italy, 498–502.
Miranda-Zamora, W.R.; Villarreyes, S.S.C.; Povis, N.L.L.; Panca, C.M.A.; Morales, M.V.S.
2020b. A new mathematical solution for packaged food thermal processing. Advances in
Intelligent Systems and Computing, 2020, 1216 AISC, 383–387