ppi 201502ZU4659
This scientic digital publication is
continuance of the printed journal impresa
p-ISSN 0254-0770/ e-ISSN 2477-9377 / Legal
Deposit pp 197802ZU3
UNIVERSIDAD DEL ZULIA
An international refereed Journal
indexed by:
• SCOPUS
• SCIELO
• LATINDEX
• DOAJ
• MIAR
• REDIB
• AEROSPACE DATABASE
• CIVIL ENGINEERING ABTRACTS
• METADEX
• COMMUNICATION ABSTRACTS
• ZENTRALBLATT MATH, ZBMATH
• ACTUALIDAD IBEROAMERICANA
• BIBLAT
• PERIODICA
• REVENCYT
DE LA FACULTAD DE INGENIERÍA
REVIST
A TÉCNICAREVISTA TÉCNICA
Post nubila phoebus”
After the clouds, the sun”
Post nubila phoebus”
After the clouds, the sun”
LUZ in its 130th
anniversary
Established since
1891
LUZ in its 130th
anniversary
Established since
1891
VOLUME 44
MAY - AUGUST 2021
NUMBER 2
Rev. Téc. Ing. Univ. Zulia. Vol. 44, No. 2, May-August, 2021.
Rev. Téc. Ing. Univ. Zulia. Vol. 44, No. 2, May-August, 2021, 75-82

Zea mays L.
José Lauro Conde-Solano
1
, Adriana Beatriz Sánchez-Urdaneta
2
, Ciolys Beatriz
Colmenares de Ortega
2
* , Jorge Ortega-Alcalá
2
y Edison Ramiro Vásquez
3
1
Facultad de Ciencias Agropecuarias, Universidad Técnica de Machala. Machala, Ecuador.
2
Departamentos de Botánica y Estadística, Facultad de Agronomía, Universidad del Zulia. Maracaibo,
Venezuela.
3
Universidad Nacional de Loja. Loja, Ecuador.
Corresponding Author*: ciolysc@gmail.com
https://doi.org/10.22209/rt.v44n2a02
Received: 08 de september de 2020 | Acepted: 12 de february de 2021 | Published: 01 de april de 2021


Zea
mays L. crop was evaluated. 1,600 m
2

(T1, control) and subsurface at 10 (T2), 20 (T3) and 30 (T4) cm deep and four repetitions. In a randomized block design,
each experimental unit was 100 m
2

sheet, diameter of the wetted bulb were measured. There were statistical differences for all the variables evaluated (p<0.01),
 
3
),

was lower in T3 and T4 (129 mm); the total irrigation time was shorter in T4 (34.08 h). Subsurface drip irrigation at 20 and

 agricultural systems; maize; water scarcity; yield; irrigation time.

Zea mays L.



Zea mays L. Se cultivaron 1.600 m
2
de maíz híbrido duro, con cuatro tratamientos: riego por


2
(10 m x 10 m). Se realizó un análisis

(EUA), frecuencia, tiempo y lámina de riego, y diámetro del bulbo humedecido. Hubo diferencias estadísticas para todas
las variables evaluadas (p<0,01), excepto para la lámina de agua por riego por efecto de los tratamientos. El rendimiento
(10.263 kg/ha), EUA (7,92 kg/m
3
) y diámetro (0,145 m) del bulbo húmedo fueron mayores en T3 y T4; la frecuencia de riego
(3,6 días) y la lámina total de agua fue menor en T3 y T4 (129 mm); el tiempo total de riego fue menor en T4 (34,08 h). El

 sistemas agrícolas; maiz; escasez de agua; rendimiento; tiempo de riego.
Rev. Téc. Ing. Univ. Zulia. Vol. 44, No. 2, May-August, 2021.
76
Conde-Solano et al.

             

          
reaching a balance, prioritizing between economic growth, poverty reduction, water conservation and climate change;
              
emphasizing the importance of water in ecosystems and the relationship of its management and operation, within a
comprehensive perspective.
Shortages of hydric resource in many regions of the world, especially in arid and semiarid areas, the high cost

    
                 
(runoff, deep percolation, direct soil evaporation and evapotranspiration, among others) (Gomes et al., 2011; Nieto et al.,
2018; Papanatsiou et al., 2019). For which Sanchez and Rivera (2018) indicated that it is necessary to use and implement

productivity and crop yield.
According to the Food and Agriculture Organization of the United Nations (FAO, 2019), the cause of the shortage of

reaching up to 95% in some developing countries. The expansion of this shortage poses a challenge for sustainable
development. Freshwater resources are alarmingly diminishing, which suggests that two thirds of the world population by
2025 could be living in water-stressed countries, if current patterns of consumption continue.
In Ecuador, and particularly in the southern region of the country, there are areas where rainfall ranges between
200 and 600 mm/year (Development Plan and Territorial Order of El Oro Province, 2015), being evident the scarcity of
water; and turning its availability in the main limit for agricultural production.

use. All the classic irrigation alternatives apply large amounts of water to meet their need in the crops, due to their high
consumption, especially by evaporation. The subsurface drip irrigation can avoid the excessive water consumption by
reducing application losses (evaporation) (Ayars et al., 2015; Eranki et al., 2017; Sinha et al., 2017; Bringas-Burgos et
al., 2020), since it is supplied to the depth where the root system of the crop develops, forming the wet bulb in the soil
subsurface part, avoiding being in direct contact with solar radiation (Lucero-Vega et al., 2017). Al-Ghobari and Dewidar

the water applications were uniform.
In subsurface drip irrigation, the main advantage is that the soil moisture content is conserved, using low volumes

production in arid and semi-arid zones is the availability of water (Montemayor et al., 2006).
Corn as grain and forage constitutes one of the most important cereals for human and animal consumption, in
pharmaceuticals and in industrial production. In Ecuador, maize corresponds to one of the main short-cycle crops; it grows
in different altitude regions, hence it adapts to different environments. The Ecuadorian National Institute of Statistics and
Censuses (INEC, 2019), indicated that the sown area with hard dry maize, nationwide in 2018 was 383,399 ha; where
production was concentrated in Los Ríos province (45.4%) with 602,000 metric tonnes.
            
minimal contribution from the slightly restricted transpiration rate (Steduto et al., 2007). It also highlights that under
irrigation conditions and high soil fertility it reached yields between 11,000 and 14,000 kg/ha (Hsiao and Fereres, 2012).
It is clear that water is a factor of productive development, where the interests of experts in planning and management
        

Rev. Téc. Ing. Univ. Zulia. Vol. 44, No. 2, May-August, 2021.
77



droughts, and applying clean technologies that protect the environment. The problem of water scarcity is a fundamental
aspect of sustainable development.
Howell (2001) pointed out that evaporation, runoff and percolation losses were minimized through micro-



surface and subsurface drip irrigation in the hard seed hybrid maize.

The trials were carried out in the experimental area of Santa Inés farm, Faculty of Agricultural Sciences, Technical
University of Machala, located at km 5 1/2 via Pasaje, El Oro province, planning zone 7, Ecuador; between coordinates
          

The climate is tropical megathermic semihumid, with an altitude of 5 masl, average temperature of 25°C, while the
average yearly rainfall registers 600 mm, with two well marked seasons, the rainy one that usually begins in January and
ends in April, and the dry one that goes from May to December. The reference evapotranspiration in this area is 1,300 to


The genetic material used was hard seed hybrid maize (PIONEER
®
30K75), seeded at a distance of 80 cm between
rows and 40 cm between plants, with two seeds per point. As for the vegetative characteristics of the simple hybrid class,
it has semi-erect leaves, it reaches medium height, about 2.50 m, it shows semi-late vegetative phase 125-135 days, its ear
position is 1.30 m, and a grain/cob shelling ratio 85/15.
The experiment design was of random full blocks, with four treatments and four replications. The trials were
established on a total maize acreage of 1,600 m
2
, containing 16 experimental units of 100 m
2
(10 m long x 10 m wide). The
treatments were: surface drip irrigation (T1, control), subsurface drip irrigation to 10 (T2), 20 (T3) and 30 (T4) cm depth.
The trenches for the installation of the irrigation system were made manually.
                
contribution. The irrigation system was independent for each treatment, controlled by a gate valve. The water layer was


± 5%, given by the manufacturer (Hydrodrip Super Flat Integral Dripline,
PLASTRO), whose working pressure was 10 m H
2
O. They were installed 80 cm between side irrigation and 50 cm between
drippers, to moisten a continuous horizontal strip. The irrigation laterals were polyethylene of 16 mm in diameter, the
secondary pipe was polyethylene of 32 mm in diameter, the main pipe was PVC of 40 mm in diameter, the energy or pressure
supplied to the system was 12 m H
2
            
underground well.
The crop yield was determined by recording the dry grain biomass of 40 plants per treatment, within a total of 160

yield in kg of dry corn grain product per m
3

To determine the optimum soil moisture content for the plant, 16 sensors (Irrometer
®
) were installed in each
of the blocks and treatments, previously calibrated at the trial site. For this process the sensor was installed in soil whose

(1)
Rev. Téc. Ing. Univ. Zulia. Vol. 44, No. 2, May-August, 2021.
78
Conde-Solano et al.

(cbar) indicates the plant needs irrigation; principle that was used for its application, whose readings also indicated the
matrix potential of the soil or the strength for the soil to retain water droplets; this device, according to Ferreyra et al. (2006)
and Girona et al.
Soil moisture retention curve for UTMACH experimental farm.
The sensors were installed at 20 cm depth inside the soil wet bulb; because the root system’s highest percentage
of roots is found at that depth. Irrigation was provided when the reading indicates 45 cbar, and was stopped when this mark

To determine the soil wet bulb diameter of the emitters installed on and under surface (10, 20 and 30 cm depth),
an excavation was made, and a tape measure was used to measure it. Those measures were taken from the central axis,
starting from this, was measured at different depths towards the ends, and the mean from the different wet bulb diameters
calculated, process which was carried out after completion of the agricultural cycle, in order to not interfere with the plant
normal root and leaf development.

cm deep), it was excavated, and a tape measure was used to measure it. The as measures were taken from the central axis,
starting from this, was measured at different depths towards the ends, and the mean obtained from the different diameter
moistened obtained, process after completion of the cycle of culturing was carried out, in order not to interfere with the root
and normal leaf development of the plant.
A Fisher test (F-test) analysis of variance (ANOVA) was performed on each variable, to identify statistically

to Tukey’s multiple comparison test (p
®
,
version 15.1 (Statistical Analysis System, 2020).

              
pp<0.002). Regarding the crop yield response to the effect of treatments,
 p>0.05), but with statistically
p<0.01). One group was constituted by treatment of subsurface drip irrigation at 20
and 30 cm depth, while the other group comprised treatments irrigation systems surface and subsurface drip 10 cm depth
(Table 1).
Rev. Téc. Ing. Univ. Zulia. Vol. 44, No. 2, May-August, 2021.
79

 Crop Yield for maize dry grain (Z. mays 
3
by the application
of surface and subsurface drip irrigation at 10, 20 y 30 cm depth.
Treatments Yield (kg/ha)
Water Use Efciency (kg/
m
3
)
Subsurface drip irrigation at 20 cm depth (T3)
10,337.5
a
7.95
a
Subsurface drip irrigation at 30 cm depth (T4)
10,189.1
a
7.89
a
Surface drip irrigation (T1)
9,259.4
b
6.10
b
Subsurface drip irrigation at 10 cm depth (T2)
9,232.8
b
6.63
b
p
Tukey’s test due to the applied treatments.
The highest yield was showed by subsurface drip irrigation at 20 (T3) and at 30 (T4) cm depth treatments, with
an mean (group average) of 10,263.3 kg/ha, followed by surface and subsurface drip 10 cm depth treatments (9,246.1 kg/

compared to Group 2 (Table 1). Regarding to this variable, experimental performance of the best treatments were compared

kg/ha (INEC, 2020). Estimated crop yields in this study almost double those obtained for regional yield reported. This was
1.77 and 1.99 times higher for subsurface drip irrigation treatments at 10 and 20 cm depth, respectively.
According to Zamora-Salgado et al. (2011), a crop yield performance between 6 and 9 metric t/ha under irrigation
conditions, it could be acceptable as commercial production, with a corn moisture content between 10 and 13%, which is in
agreement with the results obtained in this investigation, where the moisture content of the grain was 13%.

(10, 20 and 30 cm depth) was 6.10, 6.63, 7.95 and 7.89 kg/m
3
, respectively (Table 1). Subsurface drip irrigation treatments
at 20 (T3) and 30 (T4) cm depth did not show statistical differences between them (p>0.05), but they were different when
compared with drip irrigation at surface (T1) and 10 (T2) cm depth, showing no differences between the latter two either
(p
In this investigation, the yield in subsurface irrigation at 20 cm depth was 1.43 times greater than subsurface
irrigation at 30 cm depth; 10.43% greater than the surface drip irrigation and 10.69% greater than subsurface 10 cm depth,
which was the one with the smallest production. Likewise, the maximum water productivity was 7.95 kg/m
3
in subsurface
irrigation at 20 cm depth, which corresponded to 0.75, 16.60 and 23.27% of water savings, when compared with subsurface
drip irrigation at 30 and 10 cm depth, and surface drip irrigation.
Zamora et al. (2007) and Zamora-Salgado et al.
a hybrid maize crop of 2.53 kg/m
3
, while Salomó et al.
of 2.81 and 2.5 kg/m
3

kg/m
3
; contrasting widely with the results obtained in this investigation, where the values obtained were 2.76 times higher.
  p>0.05) for the water layer applied though irrigation (mm)


to treatment effect (p
to 20 (T3) and 30 (T4) cm depth, with no difference between them, but statistically different of the second, constituted


Rev. Téc. Ing. Univ. Zulia. Vol. 44, No. 2, May-August, 2021.
80
Conde-Solano et al.

y 30 cm depth.
Drip Irrigation
Depth Surface Subsurface
0 cm 10 cm 20 cm 30 cm
Irrigation frequency (days)
3.00
b
3.00
b
3.60
a
3.60
a
Mean time per irrigation (hours)
1.20
a
1.11
b
1.24ª 1.21
a
Total irrigation time (hours)
40.20
a
36.48
ab
34.78
ab
34.08
b
Water layer applied per irrigation (mm)
4.6
a
4.2
a
4.7
a
4.6
a
Total applied water layer (mm)
152
a
139
ab
130
b
129
b
Wet bulb diameter (m)
0.412
b
0.420
b
0.442
a
0.447
a
     p<0.05),
according to Tukey’s comparison test due to the applied treatments.
The applied water is related to the crop phenological stage and its physiological response to the production and

predicting when and how much to water. In general, plants respond to the water potential in the soil and not directly to the

status and soil-plant-atmosphere continuum water balance.
The mean time per irrigation was between 1.1 and 1.24 h; where the subsurface drip irrigation to 20 and 30 cm
p>0.05) between them, but the comparison with the
subsurface drip irrigation at 10 cm depth, shows they were statistically different (p<0.01). In this sense, the mean time per
irrigation in subsurface drip at 20 cm depth was 2.42, 3.23 and 10.48% greater than the subsurface irrigation drip at 30 cm
depth, the surface drip and the subsurface drip to 10 cm depth, respectively (Table 2).
     p<0.01) for the total irrigation time between subsurface drip
irrigation at 30 cm depth and surface drip irrigation, while subsurface drip irrigation at 10 and 20 cm depth, were similar
and no statistical difference between them were found; the total irrigation time vary between 40.2 and 34.08 h (Table 2).

3.72, 5.42 and 6.12 h in excess, compared to subsurface drip irrigation to 10, 20 and 30 cm deep in that order. This suggests

using subsurface irrigation.
The water layer applied per irrigation varies between 4.2 and 4.7 mm. However, the total water layer applied to the
maize crop 100 days after sowing, through surface and subsurface drip irrigation at 10, 20, and 30 cm depth, were 152, 139,
130 and 129 mm, respectively (Table 2), which corresponded to a difference of 8.55, 14.47 and 15.13% lower, comparing
with the surface drip irrigation, which provided the largest water layer of all the treatments. This represented a difference of
13, 22 and 23 mm of water, maintaining the same comparison between the surface drip irrigation, with respect to subsurface
drip irrigation to 10, 20 and 30 cm depth, in the order given.
It has been pointed out that, when comparing underground drip irrigation with traditional irrigation (gravity),
the irrigation water used for the cultivation of corn was reduced from 35 to 55% (Lamm and Trooienm, 2003), while
Montemayor et al. (2007) indicated that in forage corn, when comparing subsurface drip irrigation with surface irrigation,
there was a water saving of 27.4%; the authors agreeing that in gravity irrigation there was a greater loss of water.
It also highlights that, with the implementation of the surface and subsurface irrigation system at 10 cm depth, the
soil surface was kept relatively dry, while at 20 and 30 cm depth, it was observed totally dry. In this regard, Thompson et al.

3
- was decreased and the yields were
higher when compared to surface irrigation; attributing this to the fact that water and nutrients reached the most active part
of the roots.
Rev. Téc. Ing. Univ. Zulia. Vol. 44, No. 2, May-August, 2021.
81

Regarding the wet bulb diameter, it varied between 0.412 and 0.447 m; in this variable, the indicated values
corresponded to surface drip irrigation and subsurface drip irrigation at 30 cm depth, respectively. On the soil surface where

while with the subsurface irrigation at a greater depth (20 and 30 cm depth), this was not possible, which was in agreement
with the indicated by Bonachela (2001), who noted that while the wet bulb was in contact with direct solar radiation,
evaporation was longer, adding a consumption not demanded by the plants, estimated as up to 43% for young crops.

         
      


 
strategy to save water in arid regions. Agricultural Water Management. 209, 55-61.
Ayars, J. E., Fulton, A. and Taylor, B. (2015). Subsurface drip irrigation in California—Here to stay? Agricultural Water
Management. 157(31), 39-47.
Bonachela, S., Orgaz, F. O., Villalobos, F. J. and Fereres, E. (2001). Soil evaporation from drip-irrigated olive orchards. Irrig.
Sci. 20(2), 65-71.
Bringas-Burgos, B., Mendoza-Muñoz, I., Navarro-González, C., González-Ángeles, A. y Jacobo-Galicia, G. (2020). Análisis de

Mexicali. VÍNCULOS-ESPE. 5(3), 13-32.
de Miguel, C. y Tavares, M. (2015). . Textos seleccionados
2012-2014. Cepal. ISBN: 978-92-1-057087-9 (publicación electrónica). 148 p.

Industrial Crops and Products, 99(1), 97-
108.
FAO. (2019). Escasez de agua: Uno de los mayores retos de nuestro tiempo. Organización de las Naciones Unidas para la
Alimentación y la Agricultura [en línea] disponible en: http://w.w.w.fao.org/sustainable-development-goals/goals-6/
es.www.fao.org/fao-stories/article/es /c/1185408. [consulta: 8 agosto 2020].
Ferreyra, R., Selles, G., Silva, H., Ahumada, R., Muñoz, I. y Muñoz, V. (2006). Efecto del agua aplicada en las relaciones hídricas
y productividad de la vid ´Crimson Seedless´. Pesq. Agropec. Bras., 41(7), 1109-1118.
Girona, J., Mata, M., Del Campo, J., Arbonés, A., Bartra, E. and Marsal, J. (2006). The use of midday leaf water potential for
Irrigation Science, 24, 115-127.
Gomes de Andrade, J., Pacheco Seguí, J., Carlesso, R., Trois, C. y Knies, A.E. (2011). Perdidas de agua por evaporación en
maíz con siembra convencional y directa para diferentes niveles de cobertura muerta. I. Resultados experimentales. Revista
, 20(2), 60-64.
Howell, T. A. (2001). Agronomy Journal, 93, 281-289.
Hsiao, T. C. y Fereres, E. Maíz. pp. 117-126. En: Respuesta del rendimiento de los cultivos al agua. P. Steduto, T.C. Hsiao, E.
Fereres y D. Raes (Eds.). Organización de las Naciones Unidas para la Alimentación y la Agricultura. Estudio FAO. (2012):
Riego y Drenaje. N° 66.
INEC. (2019).  Instituto Nacional de Estadística y
Censos [en línea] disponible en: https://www.ecuador encifras.gob.ec/documentos/web-inec/Estadisticas_agropecuarias/
espac/espac-2018/Presentacion %20de%20principales%20resulta dos.pdf [consulta: 15 septiembre 2020].
INEC. (2020). . Instituto Nacional de Estadística y
Censos [en línea] disponible en: https://www.ecuadorencifras. gob.ec/documentos/web-inec/Estadisticas_agropecuarias/
espac/espac-2019/Presentacion%20de% 20los%20principales%2 0resultados%20ESPAC%202019.pdf [consulta: 15
Rev. Téc. Ing. Univ. Zulia. Vol. 44, No. 2, May-August, 2021.
82
Conde-Solano et al.
septiembre 2020].
Lamm, F. R. y Trooien, T. P. (2003). Subsurface drip irrigation for corn production: A review of 10 years of research in Kansas.
Irrigation Science, 22, 195-200.
Lucero-Vega, G., Troyo-Diéguez, E., Murillo-Amador, B., Nieto-Garibay, A., Ruíz-Espinoza, F. H., Beltrán-Morañes, F. A. y Zamora-
Salgado, S. (2017). Diseño de un sistema de riego subterráneo para abatir la evaporación en suelo desnudo comparado con
dos métodos convencionales. Agrociencia, 51, 487-505.
Montemayor, T. J. A., Gómez, M. A. O., Olague, R. J., Zermeño, G. A., Ruiz, C. E., Fortis, H. M., Salazar, S. E. y Aldaco, N. R. (2006).

., 44, 359-364.
Montemayor, T. J. A., Olague, R. J., Fortis, H. M., Sam, B. R., Leos, R. J. A., Salazar, S. E., Castruita, L. J., Rodríguez, R. J. y Chavaría, G.
Terra Latinoamericana,
25(2), 163-168.
Nieto C., C., Pazmiño Ch., E., Rosero, S. y Quishpe, B. (2018). Estudio del aprovechamiento de agua de riego disponible por

la Sierra ecuatoriana. , 5(1), 051-070.

kinetics improves carbon assimilation, water use, and growth. Science, 363(6434), 1456-1459.
Plan de Desarrollo y Ordenamiento Territorial de la Provincia de El Oro. PDOT 2014-2025. (2015). Gobierno Provincial
Autónomo de El Oro-Ecuador.
Salomó, J., Sanmartín, J. M., Pérez, C., Maresma, A. y Lloveras, J. (2019). Riego por goteo subterráneo en cultivos de maíz
y alfalfa. Estudio técnico-económico comparativo entre riego por inundación y riego por goteo enterrado. VIDA RURAL.
, 43-48.
Sánchez Delgado, M.Á. y Rivera Serna, L.G. (2018): Aplicación de dos modalidades de riego por goteo en el crecimiento y
producción de camote ( L., variedad INIA 320). , 79(1), 144-150.
Sinha, I., Buttar, G.S. and Brar, A.S. (2017). Drip irrigation and fertigation improve economics, water and energy productivity
Helianthus annuus L.) in Indian Punjab. Agricultural Water Management, 185(1), 58-64.
Statistical Analysis System (SAS®) (2020). SAS STUDIO user’s guide: Statistics. Version 15.1. SAS Institute Inc., Cary,
NC. USA. Available: https://support.sas.com/documentation/onlinedoc /stat/ indexproc.html#stat151
Steduto, P., Hsiao, T.C. and Fereres, E. (2007). On the conservative behaviour of biomass water productivity. Irrigation Science,
25, 189-207.
Thompson, T. L., Huan-cheng, P. and Yu-yi, L. I. (2009). The potential contribution of subsurface drip irrigation to watersaving
agriculture in the western USA. Agric. Sci. China. Vol. 8, 850-854.


Zea mays L.) con riego por
goteo, en el Valle de la Paz, Baja California Sur, México., 16(3), 33-36.
Zamora-Salgado, S., Ruiz-Espinoza, F. H., Beltrán-Morales, F. A., Fenech-Larios, L., Murillo-Amador, B., Loya-Ramírez, J. y
Troyo-Diéguez, E. (2011). Régimen hídrico del maíz en una zona árida, determinado en porcentajes de evaporación. Tropical
, 13, 181-186.
REVISTA TECNICA
www.luz.edu.ve
www.serbi.luz.edu.ve
www.produccioncienticaluz.org
OF THE FACULTY OF ENGINEERING
UNIVERSIDAD DEL ZULIA
This Journal was edited and published in digital format
on April 2021 by Serbiluz Editorial Foundation
Vol. 44. N°2, May - August, 2021__________________________