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RESUMEN

El fin de este estudio es investigar algunos problemas
acerca de sistemas no-lineales de -ecuaciones diferen-
ciales con perturbaciones donde éstas revisten un carac-
ter mds general que se considero previamente.

Las berramientas principales de nuestro andlisis son:
la férmula para la variacion de constantes desarrollada
por Alekseev y una desigualdad integral recientemente
establecida por el autor,

1. INTRODUCTION. Many recent papers have dealt
with the perturbations of nonlinear systems of diffe-
rential equations, Brauer [21 | Brauer and Strauss

£41 , Fennell and Proctor [51 , Marlin and Struble
£61 , Pachpatte [7,8,9 1 Strauss [ 111, Strauss
and Yorke [1 2] ,and several other authors have con-
sidered conditions under which various forms of the
stability and asymptotic behavior of a particular so-
lution of the unperturbed system would be preserved
under the perturbation. In this paper we wish to study
the boundedness, asymptotic behavior, and the rate of
growth of the solutions of perturbed nonlinear systems
allowing integral perturbations. We are interested in
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SUMMARY

The aim of this paper is to investigate some problems
related to perturbed nonlinear systems of differential
equations allowing more general perturbations than
were previously allowed, The main tools in our analy-
sis are the variation of constants formula developed by
Alekseev and the integral inequality recently esta-
blished by the present autbor,

the relations between the solutions of the unperturbed
system

x=f(t, x) (1)
and the solutions of the perturbed system
t
y'=f(t,y) + g(t,y, Sk(i,s,y)ds). (2)
to

Here x, y, f, g and k are the elements of R n, an n-
dimensional Euclidean space. Let I be the intervalo < t
< o and QN be a region in R ™, We shall assume that
teEcrtIxn,R"] f (t,x) =oforty oand
f «(t,x) exists and is continuousonI A into R
andthat k ECCIxIxn,R"] and gecC

CIxaxn,R"™1 . Throughout this paper, x(t)
& "“"o' "o) y(t):= y(g,'o,yoj will denote unique
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“solutions of (1) and (2) respectively, satisfying

l('O"O"O).’ Xo andy(to,lo,yo ) = Yoo and !

(t,t ,x )will denote the fundamental matrix so-

M ° . .
lution of t?le variational equation

2tz fx(t,x(f,fo,xo))z

such that § ( tort o1 %) is the identity matrix. We

recall that

o x(ttoxg) 1 = @ (1,10,x,)
3,
and that

Ex(',fo,lo)J = Q(t,fo.xolf(to,lo).
to

We assume that for arbitrary t € 0 and %o €En
the solutionx ( t,1,,x  Jof (1) exists for t2 o and has
values in £l . This, of course, implies that the corres-
pending matrix § (1, 191 %o ) exists in the same cir-
cumstances. We assume that there exists a subregion -
L4 of O such that for arbitrary a€ £l -

and 12 9, the solutionx ( t,1,,0)of (1) exists on I
and has values in L , The symbol |-1 will denote
some convenient norm on R™ as well as a correspon-
ding consistent matrix no.

In most of the earlier works L21, (4], [111,
’ (t,tg%xo) must satisfy a much more stringent hy-
pothesis than is needed here. The most serious of these
is 1@ (1,1,x,) 1€ M where M>0 and %ol
sufficiently small. However, in getting the first
equation in the proof of Theorem 2 given in [41 (
see,also [11] )onemustuse| §(t,s,y(s)) IKM

This implies that it is already known that | y (s) |
is uniformly small and thus destroy the ideal nature, if
any, of the perturbing terms. The present paper is a
step in removing this unpleasant situation and to es-
tablish much deeper results under less restrictive con-
ditions,

2. MAIN RESULTS. In this section we state and
prove our main results on the behavior of solutions of
(2) under suitable assumptions on the perturbation
term in (2). To establish our main results in this paper
we require the following integral inequality recently
established by this authorin [101].

LEMMA 1. Let u(r), p(t) and q(t) be real-valued non-
negative continuous functions defined on 1, for which
the inequality 1

e u + Spmu(-) ¢ R
o
s
-\-\qh)uh)d\ lds ,t ET1,
0

(3)

bolds, where wo is a positive constant. |

t T
If s p(r)exp( Sq(n)dn)dr<ﬁif0r all tET then
0 0

t
u(t)S u expl S p(s)
" 0
s
v, exp( g q(r)dr)
0 ds ), tEI.

s 1 "
.l-uos p(r) np(s q(n)dn)dr
0 Q
In our subsequent discussion our interest lies in the
following definitions in terms of the behavior of so-
lutions of (1). For similar definitions the reader is re-
ferred to [4]

DEFINITION 1. The solution x = o of (1) is said to
be globally uniformly stable if there exists a constant M
>0 such that

|u(t,t°.x°)l< Mix 1,

t>1°>o and Ixol<0

DEFINITION 2. The solution x = o of (1) is said to
be exponentially asymptotically stable if there exist
constants M> o , « > o such that

-a('—'o)
Ix(t,to,xo)lg Mlxolo '

forall t 3 t30, 1 lol is sufficiently small.

DEFINITION 3. The solution x = o of (1) is said to
be uniformly slowly growing if, and only if, for every
a« > o there exists a constant M, possibly depending on
o , such that
—a(t-1),
|,(q't°,x°)|<llx°|n o

forall t ;fo)o and Ixol <o

We now state and prove the following theorem on
the boundedness of the solutions of (2).

THEOREM 1. Let the solution x = o of (1) be glo-
bally uniformly stable. Suppose that the fundamental
matrix $ of the variational system (3) satisfies

1§ (t,s,y)I< NIyl , 13830 , (4)

where N is a positive constant,y € fL and that the
Sfunctions g and k in (2) satisfy

(5)
(6)

lg(t,y,z)I<p(t)CIyl #1211, t>o0,
Vh(t,s,y)i€q(s)lyl, o<s<t @,
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wherey , 2 € 8 ; and p(t), q(t) are real-valued non-
negative continuous functions defined on 1 such that

t ' 1
S Np(t)expl Sq(n)dn)dm [Mlloll

fo o
for allt€land .
© Mlxol expl( Sq(r)dr)
to
Npls) - . ]
{ 1-Mix IS Np(r)oxp(s q(n)dn)dy
. t t
0 0
s < ®, (7)

where M> 0 'o# 0 are constants and %, € “1'
Then all solutions of (2) are bounded on 1,

Proof. It is known (1 , 2] that for X0 £l the
solutions of (2) passing through( tor X, )satisfy the in-
tegral equation

{
ylt)=x(t) + SO(i.S.y(l))q(s.y(s),

Yo

s
jﬂ'.'.ﬁ'l)"”'v (8)
]
0
for all t for which y(t) is in 42 . Using (8), (4), (5) and
(6), together with the global uniform stability of the

null solution of (1), we obtain
1

ly(t)lg MIx | + SNpls)ly(s)l Cly(s)! +

to s
Sq(v)ly(r)ldr] ds,
to

This, and the application of Lemma 1 yields

The above estimation in view of the assumption (7) im-
plies the boundedness of y(t) on I, and the theorem is
proved.

Our next theorem shows that under some suitable
conditions on the perturbation term g and on the func-
tion k, all the solutions of (2) approach zero as t

THEOREM 2. Let the solution x= o of (1) be ex-
ponentially asymptotically stable. Suppose that the
Sfundamental matrix of the variational system (3)
satisfies

1 (t,sy)ic Niyte =% S0, (9)
where N and « are positive constants, y €L and
that the functions g and k in (2) satisfy

lglt,y,z)l p(t)Clyt 41213, ¢t o, (10)

TRyt o- ®(1-3) qee)tyl, ogsgt<®,(11)

where ¥, €85 s and p(t), q(t) are real -valued non-
negative continuous functions defined on 1such that

t t e |
g Np(r)e % Texp( g q(n)dn)dr < [Mlxole’“'oj

f t

L] (o]

for @/l tE] end

- uuoloa'°u|( S‘c(r)d')
'
8»9(:)[“' 2

}l|<o, (12)
' 1
“l-Mia u"o SN.(:]I'“ua! Sqln)ln)‘r

fo Yo

to

where M2 o, x 7 o are constants and L e £ i,
then all solutions of (2) approach zeroast ~» o0 .

Proof. It is known, that the solutions of (2) passing
chrough (15> X, i x £ 1  satisfy the integral
equation (8) for all t for which y(t) is in £ , Using (8),
(9), (10), (11) together with the exponential asymptotic-
stability of the null solution of (1), we obtain

- - ' - -
ly(t)I€ Mix le vl t°)+ gNIy(l)lc B
'
'-a(s-v)
p(s)C iy(s)l + So q(r)ly(r)idrJds.
t

o

The above inequality can be rewritten as

1 %
Iytiyte™F & dix 10%% 4 S Np(s)e T %1y(s)

to

le” * Ciy(s)1e”**® + S qlr)ly(r)1e™ "dr 1ds.

to

Now applying Lemma 1 with u(t) = [y(t) | e** |
then multiplying by e ***% | we obtain

.
' llnolou(g qlr)dr)
1
ly(t)l Illlolup(SNphJ L - 4e).
s qlin)dn)dr

] L
9 Illolg Mp(r)enp( S
‘0

The above estimation in view of the assumption (12).
yields the desired result if we choose M and | x|
small enough, and the proof of the theorem is complete.

Theorem 3 below demonstrates that the solution of
(2) grows more slowly than any positive exponential.

THEOREM 3. Let the solution x= o0 of (1) be unifor-
mly slowly growing, Suppose the fundamental matrix
él of the variational system (3) satisfies
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1901,8,y) 1€ Niylo® ')

y 12330 (13)
where N and & are positive constants,y €N and
that the functions g and k in (2) satisfy
lo(ty,2) kg p(t) Clyl+121] | t3o, (14)

(

Ik(t,8,y)g g s ""q(s)lvl, 0gsgt <,y (15)

wbere' y, 2 5.11 s and p(t), q(t) are real-valued non-
negative continuous functions defined on 1 such that

t v
S Np(r‘)-“'up(s q(n)dn)dr< [nlxolo'“'OJ'l
fo t
@
xs
for oittelang | NP(8)®
to
at :
Mix le = 0exp( (q(r}dr)
'0
'a'o ' p -t ¥
1-Mixgle Npl(r)e exp(\ g(n)dn)dr
'0 '0
ds < o, (16)

where M>0 X #0 4re constants and Xo€N,,
then all solutions of (2) are slowly growing.

The proof of this theorem follows by the similar ar-
gument as in the proof of Theorem 2 with suitable
fodifications, and hence we omit the details.

As mentioned in the introduction several authors
have studied the behavioral relationships between the
solutions of (1) and (2) when the integral term in (2) is
absent. The type of the hypotheses imposed on the per-
turbation term in (2) are general enough as compared
to those givenin (21, (4], [111 .Concerning the
fundamental matrix of the variational system (3),
the present hypotheses are much less restrictive,

We observe from the proofs of these three theorems
that there is no essential difficulty in obtaining ana-
logous results for the perturbed Volterra integrodif-
ferential system of the form

t t
y'= f(t,y) +S h“v';,)dl |/°“|,S k(t,s,y)ds),
‘o o
as a perturbation of the nonlinear Volterra integrodif-
ferential system

|
oh(t.u.l)ds.

' =f(t,x) +S'

by using the representation formula recently esta-
blished by Brauer [3] . These theorems will not be
given here since there are no new essential ideas to ex-
plain,

3. AN EXAMPLE. In this section, we give a simple

example to illustrate our Theorem 2. Consider the dif-
ferential equations

1
=1

x'=-x-¢ X

1
2
2t 20, x(t)=x21, (17)

and 1,1
-2 2

y'=-y-e¢ y ‘M(tg.

t
S:(f,s,y)ds) , taioao ; y(t°)= X
, (18)

Suppose that the functions g and k in (18) satisfy the
hypotheses (10), (11) and (12) of Theorem 2 with &« 1,

The solution x(t)= x(1, t5,x,)of (17) is given by
x(t)o';[fx :°]% - %’(t- to)} 2

yt2tzo, (19)
We observe from (19) that
Ix(t)ig Ix n'““‘"’,’ t2t>0. (20)

From (20) it is clear that the null solution of (17) is ex-
ponentially asymptotically stable,

Here

2 i L 1
Q(t,io Xo) = !5 e“ '0)'5("'0)'“ 2 ol :-.-{

(21)

We observe from (21) that
|§(',t°,:°)|su°|.""° ) |zi:=;o,
ie.
1§(t,8,y) 1< |y|e“'s), 13830
Clearly the fundamental matrix § corresponding

the solution 2(t,t,, x0) of (17) satisfies the hypothesis
(8) of Theorem 2. Thus all the hypotheses of Theorem 2
are satisfied and therefore the conclusion of the
theorem is true. :
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