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ABSTRACT

The object of this paper is to obtain the solution of a general
class of integral equations examples of which occur widely in bound-
ary value problems in applied mathematics . In particular the solu-
tion of a generalization of an integral equation which arises in
certain electrostatic problems is presented and shown to include as

a special case an equation whose solution has been given by Kalla.

RESUMEN

El objeto de este trabajo es obtener solucién de una clase ge-
neral de ecuaciones integrales , cuyos ejemplos abundan en los pro-
blemas de valores de contorno de Matemdticas Aplicadas . En particu-
lar , la solucidn de una ecuacién integral generalizada relacionada
con algunos problemas de Electroestdtica se presenta aqui. La ecua-
cién integral tratada es general y contiene como un caso especial
resultados dados por Kalla.
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1. THE INTEGRAL EQUATION

In this paper we apply some simple generalizations of the

Erdélyi-Kober operators of fractional integration to obtain the gen-

eral solution of the integral equation
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whose kernel is defined by
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where ¢ >0, 1-a> 0, y, n are real parameters , z= min(x,y), g{x)
and ¢(£) are prescribed functions and {§(y) is the solution function
to be determined.

Examples of this equation arise in the solution of a variety of
boundary value problems in applied mathematics . Using formal analy-
sis we show how the use of the operators of fractional integration
enables the general solution of the integral equation to be determi-
ned in a compact form from which the solutions of special cases of
the equation occurring in certain electrostatic problems and previ-
ously considered by Kalla [1] and Lebedev [2] can easily be deduced.
In another paper the author [3] has solved several other integral

equations, which are related to equation (1), by a similar technique.

Z. THE INTEGRAL OPERATORS

We shall make use of some elementary extensions of the Erdélyi-
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Kober operators defined in [3] by

-8{atn) rx -1
T glax: 8l lx) - §x 7 I (x6~ta> S g oo,

I'{a) a
(3)
_ J-0latntr) om ) Slodntmir) -1 .
= X Dx {x In'(ﬁm(a,x :6) ﬁ(x}}, a<0,
)
dn (b -1 R
K (x,b:8) flx) = &% [ (ts—x6> Shmomnl=t o ge 650,
i T{a) “x
(5)
_ S(n-1)+ m,,l- S(m-n+1)-1 _ L
= 07 TR P Ko, o %00 2 81 (%) 0, @<
(6)
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where m is the smallest positive integer such that o + m > 0 when

a < 0.

The inverse operators are defined by
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3. THE GENERAL SOLUTION OF THE EQUATION

Substituting for the kernel from equation (2) into equation (1)
we find that the integral equation becomes

b

X
J §(y) Ky(x,y) dy + J §{y) Kx(x,y] dy = glx], 0 <x<b, (10
0 X

Inverting the order of the integrations and using the defini-
tions (3) and (5) we see that the above equation can be written in
the operational form

(0,x : 20) &(x) Ku _u(x,b:Zc) fix) = glxl, @<xxb, (11)
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where 1 -a > 0.

On applying the inverse operators (8) and (9) in turn to this
equation we obtain the general solution of equation (1) as
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where p = p+ 1 -0, and ¢ = n+1 - a.
If m is the smallest positive integer such that m+a-1 > 0 we
can by using the definitions (3) to (7) , easily show that the above

solution, when written out in detail, is given by
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where 0 <y < b, m+a>1,
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4, EXAMPLES OF THE EQUATION
If in equation (2) we set
25 T(B) olt) = T(1-a) T(1+8-a) 22BN gsy, (16)
we find that a special case of the kernel is
(1) 26 T(1+8-a) yzo(u-u)~1 z tzo'B—l
KZ (x,y) = J ’
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where 1-a >0, B> 0, o > 0 and z = min(x,y).
On using the properties of the hypergeometric functionzFJ*)
given in [4, pp.50 - 54] it can readily be shown that the above ex-
pression can be written in the form
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In this case the integral equation (1) assumes the form
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where o >0, B> 0, T-oa >0 and we have written

ly) = OB Ly, k) = 2B gy (20)

Equation (19) is the same as that considered by Kalla [1] who
gave its solution in the special case when B=a, 0<a<] and o=17.

From the general solution given by equations (13) and (14) we
have, on using the definitions (20) , that the solution of the inte-
gral equation (19) is
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m
where o >0, >0, 1 >a>1-m, m=1,2,3,..., and Dx is the opera-
tor defined by equation (15).

Setting 0 = 1, B> 0, 0 < a <1 we find from equation (19) that

Kalla's integral equation
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has the solution, obtained from equations (21) and (22) with o = 17,
m=1,
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and 0 < a <71, B> 0.When B = a, 0 < a <1 the above solution agrees
completely with that given by Kalla [1]. As was pointed out by Kalla
equation (23) is a generalization of the integral equation solved by
Lebedev [2], for the case when B = o = %—, which is encountered in a

number of boundary value problems in electrostatics.
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