17
Gonzalez Freites et al.
_____________________________________________________________________________________________
Rev. Téc. Ing. Univ. Zulia, 2024, Vol. 47, e244709
Bevc, D., Mali, G., Milliken, W., Nihei, K., Shabelansky, A., Zhang, Z. (2022). Geomechanical Interferometry:
Theory and Application to Time-Lapse Interferometric Synthetic Aperture Radar Data for Separating Displacement
Signal Between Overburden and Reservoir Sources. Journal of SPE-OnePetro. SPE J. 27 (06): 3773–3782.
Briceño, L. (2009). Modelo estructural y estratigráfico basado en la interpretación sísmica 3D del yacimiento
Lagunillas inferior LL07. Tesis de Grado. Universidad del Zulia. Facultad de Ingeniería. División de Postgrado.
Maracaibo, Venezuela, 31-60.
Casu, F., Manzo, M., Lanari, R. (2006). A quantitative assessment of the SBAS algorithm performance for surface
deformation retrieval from DInSAR data. Remote Sensing of Environment, 102(1-2), pp.195-210.
Chrzanowski, A. and Chen, Y. Q. (1991). Use of the Global Positioning System (GPS) for Ground Subsidence
Measurements in Western Venezuela Oil Fields, Proceedings of the Fourth
International Symposium on Land Subsidence, No. 200, 419- 431.
Ferretti, A.; Prati, C., Rocca, F. (2001). “Permanent Scatterers in SAR Interferometry”, IEEE Transactions on
Geoscience and Remote Sensing, 39, 8-20.
Fjær, E., Holt, R.M., Horsrud, P., Raaen, A.M. (2008). Petroleum Related Rock Mechanics, 2nd Edition. Elsevier.
Amsterdam, The Netherlands, 391-426.
Gabriel, A.K., Goldstein, R.M., Zebker, H.A. (1989). Mapping small elevation changes over large areas: differential
radar interferometry. Journal of Geophysical Research: Solid Earth, 94(B7), 9183-9191.
Geertsma, J. (1973). Land Subsidence above compacting oil and gas reservoirs. Journal of Petroleum Technology.
No. 03730, 734-744.
He, J., Li, H., Misra, S. (2019). Data-Driven In-Situ Sonic-Log Synthesis in Shale Reservoirs for Geomechanical
Characterization. Journal of SPE – OnePetro. Res Eval & Eng 22 (04): SPE-191400-PA, 1225–1239.
Leal, J. (1989). Integration of GPS and Leveling for Subsidence Monitoring Studies at Costa Bolivar Oil Fields,
Venezuela. Technical Report No. 144, University of New Brunswick, 18-89.
Li, B., Khoshmanesh, M., Avouac Jean-Philippe. (2021). Surface Deformation and Seismicity Induced by Poroelastic
Stress at the Raft River Geothermal Field, Idaho, USA. Geophysical Research Letters, 48, e2021GL095108.
https://doi.org/10.1029/2021GL095108, 4-9.
Liu, G., Tong, J., Wang, X., Xiang, W., Yuan, H., Zhang, C., Zhang, R., Zhang, X., Zhang, Y. (2023). Geodetic
imaging of ground deformation and reservoir parameters at the Yangbajing Geothermal Field, Tibet, China.
Geophysical Journal International, 279-394.
Lundgren, P., Usai, S., Sansosti, R., Lanari, R., Tesauro, M., Fornaro, G., y Berardino, P. (2001). “Modeling surface
deformation observed with SAR Interferometry at Campei Flegrei Caldera”, J. Geophysical. Res., 106, 19355-19367.
Ju, X., Yang, J., Yang, Y., Xu, L. (2023) “Influence of geological factors on surface deformation due to hydrocarbon
exploitation using time-series InSAR: A case study of Karamay Oilfield, China”, Journal of Frontiers in Earth Sciences.
10.3389/feart.2022.983155, 6-12.
Murria, J. (1991). Subsidence Due to Oil Production in Western Venezuela: Engineering Problems and Solutions.
Proceedings of the Fourth International Symposium on Land Subsidence, No. 200, 129-139.
Murria, J. (2007). Ground Subsidence Measuring, Monitoring and Modeling in the Costa Oriental Oilfields in Western
Venezuela: The Last Fifty Years, 8th International Conference “Waste Management, Environment Geotechnology and
Global Sustainable Development (ICWMEGGSD’07-GzO’07)”, 337-372.