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ABSTRACT

A reduction formula for certain H-functions of
two variables to H-functions of one variable is ob-
tained. A special case is the known reduction for-
mula for Appell's functions F2 to the Gauss  func-
tion 2F1.

RESUMEN

Se obtuvo una fdrmula de reduccidén para ciertas
funciones H de dos variables a funciones H de una
sola variable. Un caso especial es la conocida
férmula de reduccidn para funciones Fz de- Appell

a la funcién Zpl de Gauss.

The terminology reducible is taken in the sense

used in [5) for hypergeometric functions of two va-
riables; we mean simply that the H-functions of two
variables can be expressed in terms of simpler
functions for special cases of the parameters. Sim-
ple reduction formulas which occur because of mat-
ched parameters are well known.
Cases for which factorization can be made into a
product of H-functions of one variable are known,
for example, see {1}, [3} and {8}. Actually factor-
izations become more interesting in the case of N-
variables, see {4}. Here we present a case of re-
ducibility of an H-function of two variables to an
H-function of one variable. This contains a known
result involving Appell's function Fy. Reduction
formulas for Appell's functions and their generali-
zations can be found, for example, in {5} and {7}.

The notations used follow {2} and {3}. Ve are
assuming that o) and Bk are complex; ay and by,
real but not zero.
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The definition of the H-function of two varia-
bles in terms of a double Mellin-Barnes integral as
in {2} and {3} allows us to express the reducible
case as follows

H(x,y} = H{X;Y; (CP'Q»C»I)'(Qno»‘l).(ukﬂak:ﬂkro)mi
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Next, by use of formula 7.3(15) of {6}, we can eva-
luate the integral with respect to t, which leaves
an integral in the form for an H-function of one
variable. Thus
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The following conditions are sufficient for validi-
ty. Let

n = wig (Re(ak)/ak), M = max (Re(ak)/ak)-
<0

ak>0 ay

The choice of the imaginary axes for integrations
are then justified if p > 0, M < -p<m", 0 < q <
cp. If Kx > ¢ where
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the convergence conditions in {2} guarantee abso-
lute convergence of the double integral at least
for
larg(x)| < MK = ¢)/2, |arg(y)| <7/2.

In the notation of {9} the result (with super—

scripts dropped as unnecesary for this special ca-
se) reads

Oll: y H ) -Cp: :" = H
(u,v) (1,0) | (q+l-cp: ¢, 1):{1 0, ~pay ak},

H
1,00 (B,D+1); (1, - : : -a }
(B,+1); (1,0) {ak+pak 8t
{Bk+pbk: -b, | § = 3
_ %5y | =
{1-8,-pb 2 b}, (1-cp: )5 (q: 1);
MV | (l-a, ,a,. ), (B, ,~b,)
% pqu x(1+y) -C i k k
B,D @o=a ), (1-Boby) | s

where we use the common notation for the H-function
of one variable.

The
G-function of two variables (a
seem to be in the literature.

corresponding reducible case for the
= bk = 1) does not
By a judicious choi-

ce of parameters and some indenthtion of inte-
gration paths it can be shown that a special case
of the result is the known reduction formula for

the Appell function.

Fola,B,8',Y,B" ;-x,~y) = (1+y)-a2F1(a,B';Y';
-
-x(lty) ),

see, for example, formula 5.10(2) of {5}. It is not

2

clear as to whether or how the other known reduci-
ble cases for Appell's functions generalize. Gene-
ralizations which involve H-functions of more than
two variables, as defined in {4}, can also be ob-
tained.
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