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ABSTRACT

Mumerous unexplained failures of rotating ma-
chinery by nonsynchronous shaft whirling point to a
possible driving mechanism or source of energy not
identified by preyiously existing theory.A majority
of these failures have been in machines character-
ized by overhung disks (or disks located close to
one end of a bearing span) and/or high horse power
and load torque.

This paper gives exact solutions to the nonlin-
ear differential equations of motion for a rotor
having both of these characteristics, and shows
that high ratios of driving torque to damping can
produce nonsynchronous whirling with destructively
large amplitudes. Solutions are given for two cas-
es: (1) viscous load torque and damping, and (2)
load torque and damping proportional to the second
power of velocity (aerodynamic case).

Linearized coefficients for stability analyses
are derived for a special case.

Criteria are given for avoiding the torquewhirl
condition.

RESUMEN

Numerosas fallas aiin no explicadas en maquinas
rotatorias por "whirling" asincronico de ejeg su-
gieren un posible mecanismo o fuente de energia no
identificada por las teoricas accualef. ) Una gran
mayoria de estas fallas han sido en maquinas carac-
terizadas por discos ubicados cerca de uno de los
cojinetes y/o alta potencia y momento LOTSOT.

En este trabajo se presentan soluciones anali-
ticas de las ecuaciones diferenciales no lineales
de movimiento para un rotor con ambas caracteristi-
cas, y se demuestra que una relacifén entre el mo-
mento torsor y el amortiguamiento grande puede pro-
ducir "whirling" asincronico con grandes amplitu-
des. Las soluciones se dan para dos casos (1) carga
de torsidn vy amortiguamiento viscoso ¥ (2) carga de
torsidén y amortiguamiento proporcional a la segunda
potencia de la velocidad (casc aerodindmico).

Se derivan, para un caso especial, coeficientes
linearizados para los andlisis de estabilidad. Ade-
mAs se presentan criterios para evitar condiciones
de "torquewhirl".

TORQUEWHIRL-A THEORY TO EXPLAIN NONSYNCHRONOUS WHIRLING

FAILURES OF ROTORS WITH HIGH LOAD TORQUE

INTRODUCTION

There is a history of nomsynchronous whirling
problems in rotating machinery which can be related
to the load torque on fluid impellers or bladed
disks, Typically, the rotor configuration involves
overhung (cantilevered) disks, or disks located
asymmetrically (near one end) of a bearing span.
Often, the dependence on load torque would have to
be inferred, as for example, where the whirling
seems to Ye dependent on the density of.the working
fluid ]li , or on the load horse-power |2,3].

This paper presents a theory which shows that,
if the load torque on a coning disk tends to remain
aligned with the disk axis, as in a fluid impeller,
nonsynchronous whirling can be produced as a dynam-
ic equilibrium motion, with an amplitude which de-
pends on the ratio of torque to damping.

A review of the rotor dynamics literature shows
that it has been common practice to eliminate the
driving torque and load torque from the equations
of motion in order to simplify the analysis of lat-
eral whirling. Two examples are references 4 and 5.
This procedure is mathematically correct, but ob-
viously is not suited to a study of the effect of
torque on the motion. For rotors with disks which
remain aligned with the bearing axis (i.e. centered
on the bearing span, as in reference 5), the main
effect of constant load torque is simply to lower
the eritical speed [6|. However, if the disk 1is
overhung, or located near one end of a bearing span
so that it can execute a coning motion, Bousso f?}
has shown that the disk load torque may not be in
equilibrium with the driving torque. Bousso's anal-
ysis is incomplete, as he does not show necessary
or sufficient conditions for torque-driven whirl to
ocurr, but his vector diagrams show revealingly how
a component of the driving torque camn act on the
precession coordinate of a coning disk to feed en-
ergy into the whirling motion.

This latter effect, which does not requiere a
time-varying torque, should be properly differen—
tiated from the effects of torque on rotor response
described in reference [6] by Eshleman and Eubanks.
Their experimental study showed that- a pulsating
torque of small magnitude superimposed on a con-
stant torque produces unstable whirling over a
range of speed which becomes wider with increasing
torque. The instability disappears when the pulsat-

lNumbers in brackets refer to the 1list entitled
References.
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ing component of the torque is removed. Coning mo=
tion of the disk apparently was not a significant
factor in their model.

The analysis presented below shows that con-
stant torque at constant speed can produce nonsyn-
chronous whirling if the disk motion is conical.

THE ROTOR MODEL

Figure 1 shows the model analyzed. This is the
simplest possible model which has all of the char-
acteristics necessary to produce the phenomenon un-
der study. These are:

(1) The load torqueﬂf' on the disk remains par-
allel to the disk axis (z). The vanes in the disk
in Fig. 1 are suggestive of the type of machine
which would approximate this condition. Impellers
and bladed disks are normally designed te maximize
the torque (associated with useful work)  produced
by rotation about the disk axis.

(2) The driving or shaft torque 3% is ‘aligned
with the bearing axis (Z). In a machine this torque
is often transmitted te the rotor through a shaft
coupling, which is idealized by the joint at 0'.

(3) The whirling mode is conical, with an am-~
plitude described by the angle #.

(4) Whirling of the disk produces a damping
(drag) force on the disk, not shown in the Ffigure,
This force Fj; is tangential to the path of the disk
center C, and produces the moments required for dy-
namic equilibrium , under steady-state conditions,
Note that Tp and T, cannot be in equilibrium with-
out Fy, unless 68 = 0 [7].

To avoid unnecessary analytical complexiry, the
shaft is assumed rigid (except at 0') and all of
the mass (M) of the rotor is concentrated in the
digk. Unbalance 15 not included in the present
analysis, so e = 0.

The mass properties of the rotor are completely
representad by M and by mass moments of inertia I
=1,y and I, about principal axes x'y' z through
the point 0*. These axes, and parallel axes x y =z
through €, are fixed in and rotate with the rotor.
Axes X' Y'" Z. and parallel axes X Y Z, are fixed in

space with Z along the bearing axis.

The rotor stiffness Ky is assumed to produce a
restoring moment proportional to 8, M, t= —Kqa8. This
could be due to shaft bending stiffness or coupling
stifiness at 0', or a flexible bearing support out-—
board of the disk. This stiffness is represented
graphically in the figure by a spring at OC. In ad-
dition, the rotor is assumed to be vertical, so
that gravity produces an additional restoring mo~-
mentZ of magnitude Mg sinf.

2. In most real machines, this term 1is insignifi-
cant when compared to the restoring moment of the
shaft or coupling.

Both viscous and aerodynamic models are used to
describe the velocity dependence of the load torque
and the damping force. The corresponding expres-
sions for generalized forces are given in a section
below.

The motion and instantaneous position of the
rotor can be completely described by specifying the
three coordinates z =8, and ( as functions of time.
These may be recognized as the three Euler angles
defined by Goldstein !8;. For conical motion, with
circular orbits of the disk cepter C, the preces-
sion or whirling velocity is gF = ¢, the amplitude
of whirling is 6 = constant, and the shaft speed wg
=w, = ¢ + §. The rotational speed of the disk is
w, = pcost + . The inequality of the latrer twe
angular velocities is central to an understanding
of how torquewhirl is produced. Note that the rota=-
tiopal Yelocity w; of the disk becomes zero when 4§
=90°, = 0, wg = ¢. Under this (improbable) con-
dition, all of the shaft work would have to be dis-
sipated by damping, and T; = 0.

EQUATTONS OF MOTION

The Lagrangian of the rotor described in the
preceding section is derived in Appendix A. Using
the methods of references % and 10, the six first=
order equations of motion are obtained as:

M o= —
I, Por 1)
x
1 cost
¢ = 3 p¢ - 7 PII‘ ' (2)
I ,8in"® I ,8in"8
b3 ®
cosf 1 cotzﬁ
b= -—20p + Ik P, (3)
L_ysin”6 o z x' v
2 2 R
63 N cosg p; N 1 4 Z2cos 93 P2, $
I ,8in @ I_,8ind I ,sin" @ 5
x x x
coth, ¢ t3B 2
SO 225 | pT - K8 - Mgleind + Q,, 4)
I '] 9 9
x %
b, = Q » (5)

where the momenta pg, Pgs and py are defined in Ap-

pendix B, in terwms of the velocities and displace—
ments, and the nonconservative generalized forces
Qa, Q4, and Q¢ are derived from the torque and
damping force in the next section.

GENERALIZED FORCES
Since the generalized coordinates are angles,

the generalized forces have the units of torque (in
- 1b). They are obtained from the virtual work of
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the driving or shaft torque Ty, the disk load
torque TL’ and the damping force Fd' as follows:

The total virtual work is

W = GWS + GWi + swd N

The virtual work of the shaft torque TS is
o = Ts[6¢ " sq,]. )
The virtual work of the disk load torque TL is
= ’ 9
&y, = T, [osose + sq;] 9

In general, TL is proportional to some power n
of the disk speed wy.

Two cases are considered here: n =1 (viscous),
and n = 2 (aerodynamic).

Forn=1,
T, = Cpuw, = —CL[ECOSS + w], (10)

and for n = 2,

0. : 2
L CL[}cose - é] 5 (1)
[“ |

where C; and EL are the disk load coefficients for
viscous torque and aerodynamic torque, respective-
ly.

5
The virtual work of the damping force ¥y is

W, = -Fdezse - Fd¢251n95¢ . (12)

where ?d and fd are the radial and tangential

components of ?d' respectively.

If ¥, is predominantly due to the drag of the
disk in the working fluid, it will be proportional
to some power n' = n for each of the two cases
above (viscous and aerodynamic drag, respectively).

Forn =1,

'1?; =, (2sindd)* + (ms)2 . (13)

B, ==C,20 , (14)
8

Fde = -Cd(lsine)é s (15)

where Cy is the viscous damping coefficient.

For n = 2,

—a - J:'meme@z + (mé)zl , (16)
Fde = -Ehzé \kzsineé)z + (15)2 s (17)

T, " ~C,teine¢ [/&aine_¢)2 + 0’ (18)

where EA is the aerodynamic damping coefficient.

In all cases the direction of fd is assumed to
be tangent to the path of the disk center C, oppos-
ing the motion.

For the viscous case, substitution of (l4) and
(15) into (12), (10) into (9), and (8), (9) and
(12) into (7) yields the total virtual work, which
can be factored into the form

S = Qg80 + Q8¢ + Q6. (19)

Substitution of equations (1), (2), ard (3)
into the expressions for Qe’ Q¢, and QW gives

22

Qy = €4 T, P (20)
x
g c®

Q¢ = Ts - T;T_ Py + T T cosepw 5 (21)
C

- L
Qw =T, -1 Py (22)

For the aerodynamic case, a similar procedure
using (11), (17) and (18) gives

- T . 2.2

Q= =C42" —— |?@¢— cosepw] +sin"fpy (23)
Ix,31ne
P C_cos8

L 2
Qy =1, - =
¢ s lp¢’ I: Y

= g [Py~ coalip 2, .2 2
- C4t 3 @¢ - cosepw] +8in"0p,  (24)

I ,s8ind
x

[

2
Py (25)

L
Q=T ‘pw‘ I

N

THE TORQUEWHIRL SOLUTIONS

The differential equations of motion for the
rotor of Fig. 1 are given by (1) through (6), with
Qs Qg, and Q substituted from (20), (21) and
(22) for the gase with viscous load torque and
damping, or from (23), (24), and (25) for the case
with aerodynamic load torque and damping.

For both cases, an exact solution to the equa-
tions of motion is found which describes nonsyn-

chronous whirling at constant amplitude, as fol-
lows:

Viscous case

The ratio of whirling speed to shaft spedd 1is
defined as

= 36 -
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£ = i; (26)

then

S E By 2k 1 B ®
o 1fw_sin 6+ Iz[ - f(l - cose)] mscose §

o
-
[l

*
Izr'l - £(1 - cose)] ug (27)

*
is a solution, where f is the value of & which sat-
isfies the following equation:

Rc(l = cosf)

Rc(l - cose)z + sinze

+.].2 4 2 2 8
I, \[12 + a2 (I,cos6 + 12)(ug + i m)

2(I1cosB + 1

9!

and the whirling speed ratio £ is then given by the
right hand side of (28). That is,

1, 0 12 44 (L cont 4 1) (P # 2 B
2 R e 2 g 3 —)
€5 £ sinf
*
Z(Ilcose + 12)
(29)
where
Iye= Iz Iz
W W,
2 _ Mgt 2.t
fj T 5 s Mg 7T, 0
X X
and
Y
Rc ™ c Q2
“d

AERODYNAMIC CASE

The equations of motion for this case are also
satisfied by (27), with the whirling speed ratio f£
given by (29), where ¥ is now the value of 8 which
satisfies

+ \/(1 - Cc,sa)ai:?eiC - - cosa)ZEc

sinJE - - 208873 ﬁ;

=

A e |
I, # T + 7 (Tycost + LG + i oo (0)
El
2(1,cos6 + 12)

where

Rc = 6'23
d

, and

Il’ Iz,ng, Wy are defined the same as for the vis-

cous case.

For both. cases, the method of numerical solu-
tion is as follows :

¥
L. Assume a value of 5 and use it to calculate £
from (29). -
2. Calculate R, or Ry from (28) or (30) respective~
1y.
3. Calculate the shaft torque and/or damping from
R, or Re.

Step 2 is simplified for both cases by substi-
tuting f for the right hand side of (28) or (30),
then solving (28) explicitly for R,, or (30) for
R.. The resulting expressions for R, and R, are :

2%
Rc - - fﬂin (2] < = (31)
(1 - coaﬂ)[l - f(1 - cose)]
%
= £2sin’s 32)
[ ]

(1 - cosg) [l - £(1 - <:osg):I2 .

NUMERICAL RESULTS AND DISCUSSION

The equations of the preceding section were
programmed for digital computation on the IBM-360-
MOD65 computer at the University of Tlorida. In
general, small angle assumptions were not made,
even thougih the angles are small, since the precise
magnitude of 8 is of prime interest and since some
of the computations are strong functions“ of 8. Re-
sults are shown in Figs. 2 through 7.

Fig. 2 shows how the whirling speed ratio f
varies with shaft speed. For any given rotor geome—
try, f becomes rather constant at high speeds where
the gyroscopic forces are strong. This causes the
actual 'whirling Ffrequency to become higher than the
critical speed at high shaft speeds. This effect is
independent of the type of loading or damping.

Fig. 3 shows how the ratio of load torque to
damping (RC or R,) varies with whirling speed ratio

2. Wherever this is not the case, it is so indicat-
ed on the curves.
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f, tor both types of loading. The value of Rg or Rc
read from the curves should be interpreted as the
ratio of load torque to damping required to produce
torquewhirl at a given frequency.

Fig. 4 shows how the whirling amplitude 6 in-
creases with the ratio of load torque to damping.
For a given rotor at a given speed, the appropiate
value of f can be taken from Fig. 2. Note that
Figs. 3 and 4 are independent of the mass or stiff-
ness properties of the rotor ({except insofar as
they determine the value of f).

PROTOTYPE MACHINE

To illustrate some specific results which could
be observed in a compressor or pump, & prototype
machine is defined below. The chosen design and
performance parameters are believed to be represen-
tative of some modern high speed machines (although
the present model restricts the prototype to a sin-
gle disk, or stage). These are:

Maximun horsepower — 2500 at 8000 RPM
Maximun speed - 8000 RPM :
Critical speed - about 320Q RPM

Disk weight - 25 pounds

Disk radius - 7.5 inches 5

Effective shaft stiffness = 10° in-1b/rad

The damping and shzaft lenght are treated as de-
sign variables, since they each could be  used to
suppress torquewhirl without compromising machine
performance, :

Figs. 5, 6, and 7 show representative results
for this particular machine.

Fig., 5 gives the load horsepower required Lo
produce various amplitudes of torquewhirl as a
function of shaft speed. The corresponding whirling
frequencies are also given. For example, at B8000
RPM, a load of about 1100 horsepower is required to
produce a whirling amplitude of 10 mils at a fre=-
quency of 0.71 times shaft speed. This is for L=
5.5 inches and 5% equivalent damping.

Since damping is ussually computed on a linear
basis, it is presented this way in Figs. 5 and 6.
This makes the nonlinear damping coefficient Cj am-—
plitude dependent, so the results are normalized to
an amplitude of 47 mils. For q2 damping, the coef-
ficient is then given by

c
o d

X T (0Nt (33)

where

¢, = 185 [zn\lnsz + u;"]. (34)

Fig. 6 shows that the load horsepower required
to produce a given amplitude of torquewhirl can be
increased by increasing the damping. However, the
amount of added damping required to produce signif-
icant reductions may become impractically large.For

example, extrapolation of the curves shows that the
damping would need to be approximately doubled to
reduce the amplitude from 20 mils to 10 mils, for a
load of 2000 horsepower.

The most effective way of avoiding torquewhirl
may be through optimization of the shaft length &,
as suggested by Fig. 7. The optimun shaft lenght is
that which maximizes the required horsepower. A
tradeoff must be made with synchronous response to
unbalance, however, since the curve shows that op-
timun ¢ means operation at or near the critical
speed (f = 1),

OTHER MACHINES

It is interesting to speculate as to how the
torquewhirl characteristics demonstrated by this
simple model might be manifested im machines of
greater complexity. For example, a disk mounted
between two bearings on a flexible shaft( not atmid
-span) can execute a coning motion with a potential
for torquewhirl. Multiple disks on a flexible shaft
are an extension of this case, in which torquewhirl
could occur at a multiplicity of frequencies, each
with a different required load torque and horsepow-
er. The coning angle of each disk would be deter-
mined by the mode shape associated with the parti-
cular frequency.

Although the results were not presented graphi-
cally, it was found that increasing the shaft
stiffness in the model of Fig. 1 tends to increase
the load torque or horsepower requiered to produce
a given amplitude of torquewhirl, when the whirling
speed ratic is less than unity.

If this analysis qualitatively predicts the
characteristics of more complex machines, it should
be expected that nonsynchronous whirl produced by
high load torque can be effectively suppressed by
stiffening flexible shafts to reduce the coning an=~
gles and move the whirling speed ratio closer to
1.0 (see Fig. 7). Where tliis is not practical, it
may be found helpful to selectiveley nodify the
shaft stiffness at specific lacations to reduce the
coning angles of those disks with the largest load
torque and/or misalignment in the mode shape at the
troublesome frequency. Clearly, more work needs to
be done to verify and expand on these concepts for
flexible-shaft machines.

All of the solutions described here are for
forward whirl in negativework machines (i.e;, com-
pressors, pumps, etc.) in which the disk is driven
by the shaft to do work on the fluid. No solutions
were found for backward whirl of such machines.

For positive-work machines (i.e. turbines),
backward whirl was found to be a solution with
driving torque on the disk, but the equations used
here for the torque-speed relationship probably do
not represent a realistic model for turbines, 80
this solution is not given.

= T8
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COEFFICIENTS FOR LINEARIZED STABILITY ANALYSIS

The equations presented above are exact solu-
tions to the differential equations of motion. They
represent the limit cycles of subsynchronous whirl-
ing, and therefore allow the computation of  whirl
amplitudes. Such sclutions camnnot ‘be  practically
obtained for more complex models, so a linearized
stability analysis is used to compute the whirl
frequencies, chreshold speeds of instability, and
the logarithmic decrements (i.e. the eigenvalues).

Lund [11 ] has extended the Myklestad - Prohl
transfer matrix method to rotor-bearing systems
wich include damping and destabilizing cross — cou-
pled stiffness and damping coefficients, Whereas
the Myklestad-Prohl method yields only the imagi-
nary part of the eigenvalues (i.e. the natural fre-
quencies), the Lund method yields complex eigan-
values (i.e. both the natural frequencies and the
logarithmic decrement, wich is a stability predie-
tor).

For the rigid-shaft, flexible joint, torque-
whirl model in Figure 1, the disk rotation and
translation coordinates are not independent ( i. e.
they are related by a kinemaric constraint). The
constraint aquations are R= 18 in polar coordinates
or x* + v? = ( #sin® )% in inertial coordinates.

Since the differential equations and general-
ized forces are written in terms of Euler angles ¢,

4, and ¢, a coordinate transformations is required
to derive the stiffness and damping coefficients,
ag follows :
First, the generalized torque Qg _
can be expressed as a tangential for f‘
Fy= 0_¢/R, -
Y
and the generalized moment Qscan bhe . -
radial force a
= F
FR Qa/lcosa 8
It is Q, (or Fg ) which contains cue  deoswe-
lizing torqliewnirl forces.
The transformation to x and y is
Fx- FRcoa¢ = F¢ sin¢ -
= i + F vee
Fy FRsln¢ ¢ cos ¢
where
v
L T ST
(x2 + yz ) /7_
X
cos¢ =
24 g2y 12 v (40) -
For the aerodvnamic case, the generalized
torque Q¢ is
1o s 2 c (23 . 39) &2
Q¢ = Ts - CL(w + ¢cosf)” cosf - n sin 3
... (a1)

where
T8 = gshaft torque

EL = disk load coefficient
Ea = nonlinear damping coefficient

Currently the greatest limitation of Lund's me-
thod (as with all other stability analyses) is the
lack of accurate information about the types of
destabilizing excitations which exist in real ma-
chines and which therefore are to be used as imput
to the computer program, Torquewhirl has here been
identified as one of these excitations. To put the
torquewhirl forces into a Lund stability analyses,
they must be formulated in terms of stiffness snd
damping coefficients.

The coordinates used in Lund's analysis are
shown in Figure B. In general, the stiffness and
damping coefficients are the matrices which define
the forces and moments on each disk in the x and ¥
directions.

For example, the force on a disk in the x di-
rection, due to disk displacement and velocity, is

F =K X-K Y-C X-C Y=-K a-k,B8-C a
X xX Xy XX Xy X =g Xa
= Cxﬁﬁ (35)
and the matrix equation for the forces in all di-
rections (on a single disk) is
xX ny Kx: I".vcs A cxx ny Cxc st i
X o s g
Yy By Kya| (Y O Yy S G
ax Kay Koo Kos N Cax Cuy b Cnsl
ex Mgy Nsa §‘ssj \ ® _CSx Cap Cga CeaJ

where Fa and FB are actually moments on the disk.

It can be seen that there are a total of thirty
two stiffness and damping coefficients defining the
forces and moments on each disk. The off-diagonal
elements are called the cross-coupled ccefficients.

The shaft speed wy is

ms;\b+é. (42)

The shaft torque equals the disk load torque so
that _ 2
‘I‘B = CL (§ + ¢ cosd) (43)

Therefore the generalized torque Q¢ can be ex-
pressed as

Q, = 1,1 - cost]- €, (&” sin’0) ¢ . (44)

i 9g =
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The destabilizing part of Q4 is the first term
from the expression just above. The equivalent tan-
gential force Fy is

Q¢ Ts(l - cosf)

I S (5)

The required relationships between R, 8, and «,
B, and x, y are

R = (x2 + yz)

x = ol

y = B (46)
arid b= (2 44D

Therefore, in terms of x and y, we can write

2., 2
T[l_cos(x_w‘y_)_]
A ) 3 (47)
¢ 2 . 2.3
x"+vy)2

Keeping only the first two terms of the cosine
series yields

T ¥
Fo=-2 &%+ yh) (48)
¢ g2
or T

v s
E. ==F . dink m—-=—%7Y,
: ¢ 2e” (49)
TS

Fy - F¢ cos¢ = ;;3 X

By inspection, it can be seen that the cross-
coupled stiffness are

T
8

K = ——
Xy 222

k. 4 (50)
K = —_—

o» 222

It is interesting to note that K, and K have
the same form as Alford's coefficients for the ef-
fect of tip clearance assymmetry in axial flow tur-
bomachinery [12].

As a crude approximation, the above coeffi-
cients (K., ) could be used for a flexible~-
shaft modeI by taking % as the axial distance from
the disk plane to a virtual pivet point, as deter-
mined by the mode shape.

When the rotor flexibility is distributed along
the shaft, there is no constraint between x, y and
«, B. Therefore the virtual work of the destabi-
lizing torque must be written in terms of x, y, «a,
and B. This requires that the virtual displacement
&¢ be written in terms of 6x, 8y, 6a, and &B.

Since the rotations of a disk are independent
of the translations, it can be seen that &x and GY

will not appear in 6¢. This leaves only the virtual
angular displacements Sa and 68 to be considered. A
kinematical relationship between ¢,a, and B is thus
required, Research is now in progress at Texas A&M
University along these lines.

CONCLUSIONS

From the analysis and discussion given above,
the following conclusions are drawn:

1. Exact solutions to the complete nonlinear equa-
tions of motion for a rotor with high load torque
and a coning disk show that constant torque -car
produce nonsynchronous whirling with an amplitude
which depends mainly on the ratio of torque to
damping and the whirling speed ratio. All other
things being equal, the whirling amplitude is di-
rectly dependent on the magnitude of the load
torque. The solutions given thus constitute a math-
ematically proven theory which can explain a number
of nonsynchronous whirling failures in compressors
and pumps under load.

2. No-load tests of compressors, pumps, and other
negative-work machines are not sufficient to de-
monstrate smooth and safe machine operation. A ma-
chine can pass a no-load test to full speed with no
whirling problems and yet whirl violently when an
attempt is made to bring it up to load.

3. Torquewhirl can be suppressed in a given ma-
chine by increasing the damping, optimizing the
shaft length, and/or stiffening the shaft. The
amount of damping required to reduce the whirling
amplitude to an acceptable level may not always be
practically achievable. Since the optimun shaft to
maximize the horsepower required for torquewhirl is
the one which produces a whirling speed ratio of u-
nity (operation at the critical speed), a tradeoff
must be made with synchronous response tc  unbal-
ance.

4, Cross—coupled stiffness coefficients for lin-
earized stability analysis were derived for the,
special case of Figure 1 (rigid shaft with flexible
joint). Additional work is now in progress to de-
rive cross-coupled angular stiffness .coefficients
for a rotor model with a flexible shaft.
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APPENDIX A

In terms of the angular velocities about. body-
(see Fig.

1), the kinetic energy of the rotor is

W &0 T R ) (A-1)

2 4 2 1 2
% 2 yy 2 zz

The kinematic relationships required to express
T in terms of the generalized coordinates are:

Wy = feosy + ¢singsind
uy s =—ésin¢ + ¢cosysind (A-2)
w, = $cosd +
The potential energy is
V= % xoez + Mgl (1l - cos8) (A-3)

Substitution of (A-2) into (A-1), with SRS
gives the Lagrangian as )

)
Let-v=1/1+m?[6 7+ 42 sinds)
1 2 g2 2
+ E'Iz(¢ + ¢ cos" 8 + 2¢coss)
Lk o2
=5 Kgf= Mgi(l - cost). (A-4)
APPENDIX B
Refences 9 and 10 show how first-order differ-

ential equations of motion can be easily derived in
mixed form (including both momenta and welocities)
from the Lagrangian. The canonical form can be ob-
tained by substituting expressions in terms of the
momenta for the velocities, and without the neces-
gity to derive the Hamiltonian. The advantages of
the resulting first-order equations are that the
solution can be obtained with only one integration,
and the form of the equations is inmediately suit—
able for stability analysis after linearization
(not done here). Furthermore, the need to take the
time derivatives specified by Lagrange's equation
is eliminated. If the reader prefers to work with
Lagrange's equations, these can be derived by subs=-
tituting the momenta into equations (4), (5), and
(6), and taking the indicated derivatives. The mo-
menta are:

. ; =
Pe =~ L)é = vaa » (B 1)
9L x i
p, == =1 ,¢sin 8 + I_() + dcost)cosd , (B=2)
¢ 2 b 4 z
b, - Lo (b + deost), (B-3)
ay

where L is derived in Appendix A.

Recibido el 12 de manzo de 1983
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