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ABSTRACT

In this paper, we study the problem of density

of positive and negative Fourier sine and cosine
coefficients of a function of Weiner's class Vg
which is a strictly larger class than the class o

functions of bounded variation. In this connection
we also extend a classical theorem of Fejér on the
determination of the jump of a function of bounded
variation to Wiener's class.

RESUMEN

En este trabajo estudiamos el problema de la
densidad de los coeficientes seno y coseno de Fou-
rier de signos positivos y negativos, de una  fun-
cidn de la clase de Wiener Vp la cual es una cla-
se mas amplia que la clase de funciones de varia-
cion confinada. Con respecto a eso ampliamos un teo-
rema cldsico de Fejér sobre la determinacidn del
salto de una funcidn de variacién confinada a 1la
clase de Wiener.

1. INTRODUCTION

Let f be a real valued 2r-periodic function
defined on [0,2n] and let P: 0 = t; € t1€ tz...5ty=
21 be an arbitrary partition of [O,ZWI. For 1 € p <
w, we define

vV (F) = (3 PP
p( ) = sup i£1|f(ti)~f(ti_l)l } (1)

where supremum has been taken over all partitions P
of [0.2w . Now we define Wiener's class by

vp = { f: vp(f) < o} (2)

WIENER'S CLASS

particular
bounded

We call V (f) p-th variation of f. In
Vp reducls to the class of functions of
variation for p=1. It is known [6] that

V C V. (1 gp; €pp<® is a strict inclusiom.
P P

2 2

Hence Wiener's class Vp(l <p<w s strictly

larger class than the class Vj.

-
2. Let ; ag + ) (an cos nx + b_sin nx) be the
B n=1
Fourier series of f & Vp(l £€p<®.We call a

matrix A = (A“ k)(n,k =0,1,2 ...) admissible if
. .

s
sup Z ]A ‘ =M< =,
n30 k=1 n.k
missible if (1) An,k ;An,k+lz 0 for all n and k(2)

It is called positive ad-

lim Z A k. 2 1. Evidently every positive admis-
e k=0 00K
sible matrix is admissible.

A sequence [sy} is called summable F
w0

lim J
me k=0
sumable sequence is almost convergent [4] if the
matrix A is regular. We denote

i\ if

Ak ks exists uniformly in s. An F
n,

1Lifb_ >0, Lifb >0,
n n
9% = PPy T
0ifb_%0, 0 if b_ 3 0.
n n
And
o & w

+ o - [
un(S) = kﬁo *n’quﬂ. u“(s)—kﬁolflyk‘(k*'sﬁsﬂo'l'2’")

— gL =
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vhich ave sums of positive sine coefficients and
negative sine coefficients respectively.The follow-
ing results on the density of Fourier sine coeffi-
cients of a function of the class V; are known[S].

Theorem A. Let f ¢ Vy and let dg be the jump of f
at zero, if f is discontinuous at zero, otherwise
dg = 0. Suppose that A is a positive admissible ma-
trix such that [cos kt} is summable F, to =zero for
all t 7 0 (mod 2n). A

(1) If dg> 0, then lim inf u;(s) 5 & J ) untfor-
mly in s. e
(2) If dg< O, then Llim inf u’(s) >|dg/V} (£) unifor-
mly in s. e
(3) If dg = 0 and there is at least one value x for

which the sum of jumps of f at * x is not zero,
then

5 2 + . - —
lim inf n (s) >0 and lim inf u (s) > 0
n-e hogad n

both uniformly in s.

The main aim of this paper is to extend the
above Theorem A and other theorems on density into
the strictly large class V,. We first prove the
following theorem which is an extension of a clas-
sical theorem of Fejér [2] on the determination of
the jump of f € V; into the class V_ . More precise~
ly, we first prove the following theorem.

Theorem 1. Let A = (k) be a positive admissible
matrix such that (cos kt}lis summable F, to =zero
for all t # 0 (mod 2m), then for every f € Vp and
for every x ¢ [O,Zﬁ] the sequence

3) Bk(x) = [k(bkcoskx - a sin kx)}

k
is summable FA to 7 1d(x), where d(x) = f(x+0)-
f(x-0).

3. NHow it is necessary to state a fewothertheor§m§
which we shall use to prove our theorem. Young |[8]

proved the following two Theorems in  connection
with the class Vp.

1 1
Theorem B. If an f € Vo and g € V, where — + a—>1,

have no common points of discontinuity,” their

Stieltjes integral

2
f i dg

exists in Riemann sense.

Theorem C. If {f.} ¢ Vp (I ¢ p < ») such that
Vp () < M

for all n where M is a fixed constant_  independent
@ r hl
of n and (fy} converges to £ in 0,27, then

2m 2m
lim [ fpdg= [ £ dg.
g 0

for all g ¢ Vp(l $p <.

First we prove the following lemma to prove
theorem 1.

Lemma 1. There exists a constant M independent of
n such that

Vp(Dn) < M

n
for all n and all 1 ¢ p <« @ where D =D (&) = z
n n 2

cos kt denotes Dirchlet's kernel.

Proof of Lemma 1. It is sufficient to show that
Vi) s oM

for all n. Since

27 ,
Vi) = fo [d Dy (t)ide

d
where d Dn(t) = —-— [{l+cos t +cos 2t+

at ...+ cos nt}

- {sin t 42 sin 2t +...+n sin nt}

Hence

- 42 -
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9 sin % dp_(r) = - Lot §_+ 665 %E PR It can easily be verified that
(2n+l)t
n cos R } 2 m
G(n,t) = 0(n%t) (0 ¢t <)
l i
=0 (— t > —.
and <t) n
Hence
4 sin? §~d D_(t) = - {(1-n) sin nt + n sin (o)t )
2
1 m
I = j;/“ |6(n,t){dt £ 7
Therefore, we can write 2n
I3 = G(n,t)|dt ¢ log 4.
3 jﬂ/Z [ ’ l g
T sin nt,
d Dn(t) =n |[-G(n,t) + = and
2 ' ) 1 '
where I = f“/ [G(n,t)]de g f;/z | ﬁAEEEAEE_.|dt
"/n n 4n sin? 7
Gla,t) = sin nt 4 Cos nt
.2 ¢t t
4n sin 7 2 tan
= /2 ,cos nt
7T et - gy 43,
T/n 2 tan —
2
Hence
Since
2'1, -
Vi(y) =0 [, [-G(n,r)+ SRAL 4,
< n2 w2 dt 5
J1 < n f ;7 £y
m/n
2w ( .
<n fo [G(n,t)|] dEt + num
and
But /
/2
Jo ¢ %Ers %.
m/n

2 ) ‘
jo |G(n,t)|dt = fz/n |G(n,t)idc +

Collecting all the terms of Iy, I, and I3,we obtain
m/2 i
+ [ 6, 0)| dt
m/n

'"'2 m
\) (Dn) < n(2—+§+ log 4) = nM.

2q
+ [ | 6n,0)| de = Ik T+ 1.

m/2 This completes the proof of Lemma I.

- 43 -
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4. Proof of Theorem 1. Consider the sum &

i ¢ E
Ifo Kt’t.s(t)d"’x(t)I €3 (7
LA B, (€)= T & . (kis)n?
kio “n,k k+s( ) kio n,k( s)n Using Abel's transformation, we can write
T
I b (D)sin(kt)t dt N
)

o
(t) = ) A cos(k+s)t =

KN!S kio n.k )

where ¢ (r) = f(x+t) - £(x-t). Since §_ (t)e Vpgl b

p < @) afd sin kt, cos kt are continuou$ functions :

belonging to Vi, hence the integrals

DY)
k2=o 5 nrka,s(t)Hn.NoN, (&)
14 w
f sin kt d¢w(L) and fD cos kt dwx(t) : i .
o where An’k— " - An,k+1and DN,s(t) =
2 N
exist from Theorem B. Integrating by parts, we can -
write ) cos(k+s)t. Hence
k=0
o N—l

-

hil
Aal . =X -1
L Mok B (6) = 1 TG fo K, g ()Y, (E) (4)

k=0 VP(KN,S(C)) $ kio !Axn.klvp(nk,s(t))
h [
where +|kn,N|vp(DN,5(t))
Kn,s(t) = kio An'kcos(k+s)t (5) ;
g kﬁolen'k[vp(nk’s(:))

It is sufficient to show now that

But from lemma 1, we conclude that there exists a
constant M independent of N and s such that .

m
Lin [ K, ()4, (0) = 0 (6) )

Vo Ry (€)M kzo kja _—

uniformly in s. Since §_(t) is continuous at t = 0,
glven an € > 0, there eXists a § > O such that

for p > 1. Using the definition of a positive ad-

§
‘ ! 3 missible matrix and taking limit as N » =,we obtain
[o ldu ()] € 35,

V_(K (t) £ M
and hence p 0,8

~ b4 -
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Now using Theorem C for a given ¢ > 0, we can find
a8 >0 such that

"
E

U SMOUNCIES ®)

From (7) and (8), we obtain (6) which is sufficient
to prove Theorem 1.

Remark 1, If A= (A ) is a positive admissible
matrix, then 51m11ar5y we can further prove that

under the hypothesis of Theorem 1y mot only Che
sequence [Bg(x)} but even [IB (x)|} is summable Fy
to mld(x) for every x €|0, 2n and for every
fe vp(l £ p <w),

Theorem 1 contains as a special case the fol-

lowing sharpened version of Fejér's Theorem (cf.
Zygmund [9] p. 107, Th. 9.3.).

Corollary 1. If f e V;, then

nts

lim(n+l)_l I

k(bk cos kx + ap sin kx) - n—ld(x)
e

k=-n-g

uniformly in s for every x ¢ fO,Zn}

5. Applying Theorem l, we extend Theorem A  into
Wiener's class Vo in the following form.

Theorem 2. Let f € Vp (1 ¢ p <®) and let dy be the
jump of £, if f is dlscontlnuous at zero, otherw1se
dg = 0. Suppose that A = (A ) is a positive  ad-
missible matrix such that [¢dS kt} is summable FA
to zero for all t £ 0 (mod 2m).

+ 1
(1) 1f dy » O, then lim inf pn(s) % dg/2 /a Vp(f)
uniformly in s. o

1
(2) If dg <0, then lim inf u_(s) >|dg|2 /q v, ()
uniformly in s. e

. & o+
(3) If dg =0, then lim inf un(s) 2

u;(s) > 0 uniformly in s, where ;—+

0 and %jg inf
=1.

a -

We need the following theorem [cf. Siddiqi [6]

P. 569] in which we calculate the order of Fourier
coefficients of a function

fev (1gp<w),
P
Fourier coefficients of a funmction f ¢ V (1 ¢ p <)

Theorem D. If f ¢ Vp(l §p<®), then

als 1an 5
L .. 1
for all n 3 1, where ;—+ E =1,

Using Theorem 1 and Theorem D, we give the
proof of Theorem 2 below.

l
Proof of Theorem 2. Since (kts) )Ps (k#s)  for

every p and

scos(k+s)x -a sin(k+s)x) =

Loag (et oy, kts

k=9

w—ld(x)+ o(l)(n + ») for every f € Vp and for every

X E [0,2u] from Theorem 1, hence we obtain

©

lim § Mk

i/p
(k+s) (b
v ke k+s

cos(k+s)x—ak+ssin(k+s)x)=

= ﬂ“ld(x)

uniformly in s for very x E[O,Zﬁ]. Hence for x = 0,
we obtain

f Ank(k+s)l/pbk+s = n-ldo + 0(1) (n =) (9)
k=0

uniformly in s. We can write

- 45 -
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LY
1/ + -
. P =54
z An,k(k+s) bk+s 4 z
k=0

+ = - :
where I and [ denote positive sum and negative
sum respectively. Since b are Fourier sine coef-
ficients of f € V_, hence from Theorem D

P

q
< v () (10)
k+s n p

where V,(f) is the £~th variation of f. Now using
the definition of pn(s) and (10), we obtain

§

1y + L/p
p g
An’k(k+s) b ) An’k(k+s) LI

k+s

W r~—1

k=0

1
+ z/q

£ un(s) b

v (£)
P

Taking limit as n > « and using (9), we obtain

1

b2 d

m dg € lim inf un(s) — Vp(f)
o

which can be interpreted as
1
lim inf u:(s) 3 dg/2 /a Vo ()
uniformly in s which is case I of Theorem 2.

Case 2. 1If we apply the same arguments of Case 1

on -f instead of f, we obtain

1
lin 1nf u (s} » idgi/2 i v, ()

N+

uniformly in s.

Case 3. From Remark 1, {i? (x)l} is summable FA to
17l d(x) for all x ¢ [O,ZWJ. Hence for x = 0, we
obtain

7 A <k+s)1/P ib [ =1 tdy+0(l) (n> el
X n,k kts 4
=0

uniformly in s. Adding (9) and (ll) and using the

definition of absolute value, we obtain

w+ 1/ -1
2L A, ks Py = 2m

fhe dg + 0(1) (n»>w). (12)

Now from (10) and (12) and by the
u:(s) we obtain

definition of

+
lim inf p (s) 2 O
n-=e o

uniformly in s which is first relation of
Similarly we can prove the secand relation.
Theorem 2 is completely proved.

We note that if if we choose A as a matrix of
arithmetic mean and p = 1, s = 0, our Theorem 2
gives asharpened version of a Theorem of M and §.
Izumi {3} (cf. Siddiqi {5] p. 94, Th. A'). Now we
define

case 3.
Hence

1 2V ()
1 Eagl® 3" 3
m n
qn(x) = .
otherwise
v () 1/
1/q —R?—— cn Py <Xy,
1 (-2 ' n
r (x) =
n
0 otherwise
We also define
HOTC I )
L kio 0,k icts
Un<s)(X) = kzo An,krk+s(x)

- 46 -
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Then we can similarly (cf. [SJ, p. 100) prove the
following :

Theorem 3. Let f € Vp(l ¢ p < =) and let dj be the
jump of f at zero, if f is discontinuous at zero,
otherwise dy = 0. Suppose that A is a positive ad-

missible adtrix such that {cos kt} is summable F
to zoro for all t 30 (mod 7). ‘

(1) If dy > x then

+ i (do—X)i
lim inf un(s)(x) > ¥
e (v ()= [do|+]dgxl+{x 2"
unformly in s.
2) If dg < x then
| |
e |
lim 1f unfs]{x] } T
Lol oL
[ (v (f)-|d0|+|d0 -x:+ixi)2 {

P

As a special case for x = 0, Theorem 3 reduces to
Theorem 2.

6. Now we consider the problem of density of
Fourier cosine coefficients ap of a function of the
class Vp. We denote

*
q* = i or =
% 0ifa 50 % 0if a » O0;
n n
and also denote
-]
+ = " ‘(
valsd = 4 xn,kq bs? Ypto =
k=0
- N L
! xn,kr k+s (s = 041, )
k=0

then we prove the following :

Theorem 4. Let f € Vp(l < p < w) and has points of
discontinuity different than origin. Suppose that
h= (An ) is a positive admissible matrix  such
that ’ {sin kt} is summable F, to zero for all t

# 0 (mod 21) then

+
lim inf v (s) 2 O
n- o

uniformly in s and also

lim inf v (s) 2 0
n

uniformly in s.

For the proof of the above theorem, we need the
following lemma.

Lenma 2. Let A = () ) be an admissible matrix

eh that (gin K6} 18" svmable F‘ (0 aero for all
70 fod 1), then for every £ y (Lcpe

and for every x ¢ [9,2], the sequence

(A (x)} = [k(akcos kx + b, sin kx)}

k k

is summable FA to zero.

The proof of Lemma 2 is similar to the proof
of Theorem 1. Hence we shall not give the proof of
lemma 2 here.

Proof of Theorem 4. Under the hypothesis of Theo-
rem 4, {A (x)} is summable F, to zero for every x ¢
[0,27]. Hence for x = 0, we obtain

(n + «)

0 o~1 8

An’k(k+s)ak+s = 0(l)
k=0

uniformly in s. Since A is a positive matrix, hence

w0 l/p
¥ Agc(eFs) o= 0D
=0

(n + @) (13)
k

- 47 -
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uniformly in s. Since a are Fourier cosine co-

21/q *
£ -—n- Vp(f)\’n(S) .

Taking limit as’n +» and using (13), we obtain

+.
lim inf ‘-’n(s) >0
e

uniformly in s. Similarly we can prove the second
relation of this Theorem.Hence Theorem 4 is comple-
tely proved.

If we ohosse | to be the matrix of arithmetic
mean, p =1 and s = 0, then our Theorem 4
gives a sharpened version of another Theorem of M
and § Tzumi 3].
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