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ABSTRACT

Recurrence relation for the modified moments

l
| f(X)CkJ(x)dx

of the function f with respect to the Gegenbauer
polynomials ¢ of order A(A>-1/2) is presented.
The result is obtained under the assumption that f
satisfies a linear differential equation with poly-
nomial coefficients.

RESUMEN

Se presenta la relacidn de recurrencia para
los momentos modificados

1

A
/ £(x)C, (x)dx
-1

de la funcidn f con respecto a los polinomios de
Gegenbauer Cf de orden A(A>- 1/2). El resultado
se obtiene bajo la suposicidn de que f  satisface
una ecuacidn diferencial lineal con coeficientes
polindmicos.

1. INTRODUCTION

Let f be a function defined on the interval

(-1,1) and such that

1

[ £exax < =
e |

(k > 0).

Key words and phrases : modified moments,Gegenbauer
polynomials, recurrence relations
AMS classification : 33A65, 65D30, 65Q05

RECURRENCE RELATIONS FOR MODIFIED MOMENTS

According to Gautschi [4], we call

1

[f] = [ £e)c) e
X

(A > -1f2) (1.1)

modified moments of f with respect to the Gegenbauer
polynomials Ci (in short : the Gegenbauer moments).
The case A= 0 is of particular importance. We have

2
Cy = Ty, C =IT

where T, are the Chebyshev polynomials of the first
kind. We shall refer to the integrals

1
rk[f] = {f(x)'l‘k(x)dx (1.2)

as the Chebyshev moments of f£. Obviously,

0 " k
2

tolf] = mo[€], =lf] = Empfe] Gen. Q.3

Some important computational problems in the
field of numerical integration can be solved by
procedures, which require the Gegenbauer or
Chebyshev moments ({2], [4],[5],[9],[13],[14],[16],

17]).Scmetimes these moments can be computed di-
rectly in integer form or in terms of special func-
tions ([1],[3],.[6].{7],[8],[18]). Most frequently,
however, they are obtained from recurrence relations

(2], [9],[10], [11],[12],[13], [1e], [29]).

In [10], some algorithms have been presehtgd
for obtaining recurrence relation for Gegenbauer
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moments of a funetion f which satisfies the linear
differential equation

n
1 »pf = q (1.4)

of order n, where py are polynomials and the func-
tion q is such that the moments m‘[ql exist and are
known. The first algorithm, which, however, is also
the most complex, leads to a recurrence relation of
the lowest possible order.

The aim here is to present a new algorithm,
which has some remarkable features. First, the
recurrence relation and its order are obtained in
integer forms, being expressed in terms of the
coefficients of equation (l.4). Second, the com~
putational complexity is considerably reduced.Third,
the algorithm can be easily implement in a computer
language designed to perform symbolic manipulations
of rational expressions. (Notice that Robertson
[15] wrote an ALTRAN program w&icb is an 1implemen-
tation of the first method of [10].)

Let us remark that recurrence relations for
the Jacobi moments

1

i f(x)Péu’B)(x) dx
=4

(¢ > -1, 8 > -1)

may be obtained using a similar technique.

2. DIFFERENCE OPERATORS

The results given in the following sections
are expressed in terms of a certain type of linear
operator. Consider the space S of all "doubly infi-
nite'" sequences of complex numbers (all  functions
s 1 2 > C, if you will). Under the usual operations
of pointwise addition and scalar multiplication,
S becomes a linear space over C.

Let S* be the space of all linear mappings of
S into itself. Given T € S* and a sequence [z}eS,
let the k-th component of the sequence T{zy} be de-
noted by Tzg, so that

T {zk} = {Tzk}.

Let the symbols I, © and E" (meZ) denote the iden-
tity operator, the zero operator and the m-th shift
operator on 5, respectively. We then have

(keZ).
Clearly EO = I.a

Let L be the set of all operators from S* that
can be expressed in the form

where Xg, Ay, ..., A, are rational functions in S,

U, reZ, r > 0. Every non-zero operator Lel can be
expressed in the above form with AgZ 0 and X, # 0.
r = r(L) is referred to as the order of | ;hile
Aps «+.s Ay are called the coefficients of the
operator L. The elements of the set [ are known as
difference operators. Let Ly, L, be two difference
operators with

u1+3

(m=1,2).

We define the product of Ly and L, to be the oper-
ator

1T N

ultu+it]

=
—
=
N
!
I o~1 —

DA (22 (kbiup)E

i=g j=0

Under this multiplication and the addition defined
in a natural manner, [ forms a ring with unity I.

Let Lel and ueS. Equation

Lo, = u()  (ke2)

is called the recurrence relation for the sequence
{zKk}eS. The order of the recurrence relation is the
order of the difference operator L.

3. PROPERTIES OF GEGENBAUER MOMENTS

In the sequel it will b-rCanenient to have
defined Gegenbauer moments my|f| with negative in-
dices. If 2X is not an integer, we define
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g .
m_k{rJ =0 (k > 1). It is easy to generalize (3.3) so that we can
evaluate mi |pf], where p is any polynomial.Namely
we have ,

m [pf] = p(Om [£]. (3.6)

Similarly, we can replace (3.4) by

= —mi_h{f} (k = h, htl,...).

1
iAr (i)'l Arat © h Ar (h—l)l
D'm, £ = £+ D £
Let us define the difference operators D and X by ikl : mk[ : hil ¢kl PG
1 -1 Let us recall that [IOJ
D= 20 (E "-E) (3.1)
and .
i_ -1 S i
D" = 2 "(k+i-i) ) 0..(kt)E , (3.8)
L i 21+1 j=¢ I
X = m [ (k+2)3=1)E +(k+L)E}. (3.2)
where

From the following well-known properties of  the
Gegenbauer polynomials

' : . 0 () = (DI (o1, (ei29) (o)
2(k0)xCy (1) = (H)C ) ()+(22-1)C, ) (x), - J ] +

G=0,1, ..., 1),

[ A

A d A 1
2(khN)Cy (%) = H?‘[Ck+1(x)' ck_l(x)J and that

and from (l1.l1), it can be shown that [.-10]

i
xt -t 3 gi.(k+A)EZJ—1 , (3.9)
j=o
o [x£] = xm) (£] (3.3)
where £, .. are rational functions defined recur-
sively +J by
and
r _
X >00(K) = 1,
b [£1] = mh (€] 402 (], (3.4)
k k
-1
v = - _
where "13 () =« {(k+A I)Ci_l’j(x 1)

N [ N 1%=1
[f] = [E()C) (x) (3.5)
¢y LE] x)C, (x th +(K_)‘+l)':i—1,j—l('<+l)}
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in particular,

¥ =
i i <l j-1 : _
o] G EYThHn for x =0,
=0 ]
(3.10)
-
=2 7 H eH for A = 1
j=o
Further properties of mk[f! will be given
in Lemaas 3.1 and 3.2, We first define the

difference operators

- (2k+20+1) 2
A = I= ormains (321
and
(e) (2k+24+1) 5
Qi = (k+2x-1) T+e(k+i42) ?Eilaz;?zijzf B (3.12)

for i =0, 1, . and ¢ < [-1,1}. It can be checked

that
A$E) e = o8 b (3.13)
and that
ey (e) _ () () .
ApTQL T 9T AL, G2 D
(3.14)

Let us introduce the notation

s{e) - 1
ij

for 1.4 j;

(3.15)

= A(E)S(e) for i >3 >0,

i Si-1,j
pid o gl®) for « > O (3.16)
i i-1,0 -
and
RF:)‘ 1 for h=20, 3.17N
n
(e) (&)
= f h> 1.
Qh—l Rh—1 or >
LEMMA 3.1. For any 1i =0, 1, and ee[-1
we aave
GRIEE } _© A o F(e) (e) A ih]
¥ mx[ Sef| =By wplf] ¥ hi. Si1.0%n Y% T
(3.18)
= Nod
where 55 = (x+€) T

Proof. For i = 0 equation 3.18 holds trivial-
ly, and for i =1 it readily follows from (3.16),
(3.6), (3.13), (3.4) and (3.17). Assuming that (3.
18) is true for a certain i(i>1), we obtain from
(3.15) - (3.17)

ple) Algitl f} - Age)PFE)mA{ 52(5Ef)J (3.19)

ity kt £ i i Tk

_ () (e) Ap A o Y N T
= A;R % m [5_£]+ hﬁl 16 o) D¢klac fJ.

From (3.14),

fE)Q(E) (e) (e).

() (e) _
8L R TRy Ry Ry By

1
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For i = 1, (3.18) reduces to We shall need the identity

=y ) ; (L) A = i+1 ; 7
P fs 6] = m "k (€] +r{%0ey[£]. 5 L)1 G0} = (xe) 1 2-DE ()
; ’ (3.25)
- G+ (x+e)E(x)}  (320).
Thus, the last expression in (3.19) can be written
as
Equation (3.23) holds trivially for j=0. Assuming
i+ . : that it is true for a certain j (j»0) and using
(&) Aror . = J(€) (&) A[.i#1-h (3.25) and (3.24), we obtain
R..om [£] + ] 8. R D¢ |8 "
s UL | B B
X 2 1 o b
3 M gIH ! | oafBN Faa iyp
Define H, HE )' Vge)e_L by mk[éc [ (x=€) f(x)}_ = ‘j m [ (xe=1)E" (%)
+ (j+1)(x+g)f(x)J
-]
i = 2“1&.” [ (k20=2) o = (1) 5E) (3.20)
(E) . )\l’_» _ (E) )lr =1
= {H+<J+1)(x+e1))mku] = Vo m e
g€ - jri(teel) | for i> 0 and e =tl, (3.2D)
1
4. RECURRENCE RELATION FOR GEGENBAUER MOMENTS
V?L) =1 for j =0 and € = zl, (3.22) The main result of this paper is contained in
] Theorem 4.1 below. Let us observe first that the
differential equation (l.4) may be written in the
equivalent form
= ng) H?E) for j>1 and € = %l.
=¥
s (1)
L (qif) =4, (4.1)
i=0
LEMMA 3.2, For any j > 0 and e £[-1,1}  we
have the identity
where
A i j | ) Ared 5 .
m st o] = viPm e, 8 = o) 8 i b
. ‘ q; = I 0170w (= B Ly eu me
(3.23) F=i
(4.2)
Proof. It can be shown that [10}
w0 shall need the following result.
LEMMA 4.1. For every i>0 and for e =%l we

Ar S A e
mkl.(xz—l)f'J = Hmk Li“- (3.24) . ey
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i .
Lt e -

dx peg T+ © &
where ¢ = (xt¢) g—,
E bl
R CILNG R A (4.4)
and B(a) are the generalized Bernoulli  numbers

definéd implicitly by

—1 8
—t
—
=
)

o
"
L1

¢ .
-

Proof. Combining the identity (|12], v.l, Eq.

L8 (1)

i ; .
- (l) i-h
lig= & By
" h=0
with (ibid., Eq. 2.9 (4))
» ) i 4
(2R} = T (s+idg(a) (8 =23,
dz J=-
we obtain
i . i .
o -h
é—, (zlg(z)} = 3 ﬁﬁl)él g2y,
dz* h=0
For ¢ [-1,1}, let z = x+¢ and f(x) = g(z). Obvi-
ously, & f(x) = 6g(z) and (4.3) is simply a tran-

scriptioniof (4e5).

It should be remarked that the coefficiegts
(4.4) can be Cglc$lated recursively using
formulae (c.f. [12]|., v.1, Liq 2.8 (7))

31 Bél'l) +i8£f;1) (i>l;h>0),

(4.6)

THEOREM 4.1,

Let f be a real function defined
on (-1,1) satisfyin,

g the differential equation(4.1),
and let the Ge enbauer moments m [f(i)j (i =0, 1

..y n) and mk[qj exist (A>-!/2 ).
negat%ve integers such that the coef
equation (4.1) can be written in the

bl
Let e be non

ficients qi of
form

81. e 3
() = (xtl) PHeel) ’l’lui(x)

(.7)

(1 = T ydymayts qi i0),

where uy is a polynomial, ui(tl) # 0. Let

S

= max | max g =
h ™™ Nieniqigo o020 0 (b =2) (4.8
and let
e =1 for sy <5 _,
(4.9)
=-1 for s1 > S—l’
s = E g = s_e, d = o-s (4.10)
Finally, define the polynomials
n-s
-7 g -i " -
Uh(x) = ) Bi_h(x+5) qi+s(x) for h=0,1,...,n-s,
i=h (4.11)
and
= (woeyTd . .
vj(x) = (x-€) uj+d(x) for j 1,2,..., n-o.
(4.12)

= BY =
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Then we have the recurrence relation

i (£ = (), (4.13)

where

(E)S;l 8~1 g
g LD g+
1=0 _0

(¢) R(s)u ) +

bE R d-1,k°h "h

(6.14)

n-o
(e) z V(E)V x)
h=1

R

and

S
9 - -1+
(k) = P(ge)Dsm?[q - Pég)_) p®Im

r (h)
{(qh+jf) J -

The order of (4.13) is expressed by

r(L) = s_,+s,+2 max (deg qi—i). (4.16)

OEiip,qiio

Proof. Equation (4.1) implies the identity

)\r— (]_)"I _ Ao (4.17)
mkt(qif) J m |a]-

I ~13

1=0

Let s be the integer defined in (4.10). Let t he
operator DS act on both sides of (4.17) and wuse
(3.6) and (3.7). We obtain, after some algebra,

T oe-i ) o A (i-e)]
L) - r.9 t 1-8
iio D™ g, By £+ iis m [(qif) J = n(k),
(4.18)
where
3 s . ,N=]
ﬂ(k) _ Dsmu I'q'l v DS-J‘H - ¢)\ r( f)(h) )
Kl j£1 Lo B e

(4.19)

Now, 1F readily follows from (4.8) - (4. 10) that
i 2 1-s > i-0. Thus the formulae (4.11) and(4.12)
actually define polynomials. Let usg denote v.(x) =
(x+e)5-1 ¢i(x) for i 2 s. Using Lemma 4.1 we érans—
form the second sum on the l.h.g. of (4.18)

n-s

(1)1

A i 1
Hll;[[(x+g)1\)s+i(x)f(x)} J

Here oy is the polynomial (4.11).

Let e and d be the integers defined in (4.93
and (4.10), respectively. Apply the operator Pée
(see (3.16)) to both sides of (4.18), then use
Lemma 3.1 and (3.6). The result can be written

the form in
s—1 d o 5
- -1 - ) € Ar .9
{Pée) 7 DS lqi(x) + Séil,th uh(x)} kafj
i=0 h=0
(4.20)
"3 Al ]
€) o \ _
£y hilmktée(um’df)J_ T(k),
where
d n-s-j
() o (e) _(e) X
k) =P (k) - ] s;) R:D ) ¢
d =1 d-1,373 fisp k
h h)
[65(”h+jf)J' (4.21)
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Using (6.17), Lomwa 3.3 and (3.6), ve have

¥ B .k h ]
- _ - 1t
hﬁl mk[ﬁa(uh+df)} = hﬁl mk[dsf(x-e) vh(x)f(x)}J
n-o n=-o
- ( A 1 - VY
N hél vhe) mk[vhfj - hél V}(‘ ) h(X)ml)(Lf;.

This together with (4.19) - (4.21)implies equation
(4.13) in which the operator I€L and the function
1eS are given by (4.14) and (4.15), respectively.

As we have remarked, equations (4.1) and (1.4)
are equivelent. Now, we have seen that (4.13) is

obtained with the help of the difference operator

such that

Il ™~13

i Ara Ace
5 ma[pif(l)] = m, [£]+Pm, [q] -1 (O

i

which implies [10]

r(l) = r(B)+2 max

0<i<n,q 70

(deg q;-1) .

Observing that r(P) = r(Pss))+r(Ds) = d+2s5 = sto,we
obtain (4.16).

There are three special cases when (4.14)
(4.16) are significantly simplified.

i
Finst special case : q;(x) = (x?-1) w; (%) for
a polynomial wi(inO. ly..., ©). Then

(1)
Vi vh(X), (4.22)

S
L= )
=0

hy

(k) = mi{q],

(4.23)

and

r(L) = 2 max  (deg w +i). (4.24)

. b 4
Qiggp,wi10

Here

NG) j-h
v, (x) = jih sj{h(x-l)J w, () (h=0,1, ..., n).

(4.25)

Second special case i q.(x) = (x+e)lv_(x) for
a polynomial vi(i = 0, 1,...} n), and qn (2e) # 0,
where ¢ [-1,1}7 We then have

n
a N alE) (e)
L hio n-1,0%n &), (4.26)
co@® A B (e) (e). B
k) =2 “m [q]- ] £ T
T gm PLET T g Tk
[
|86 04548 (4.27)
whare
n
Hy (x) = ig ﬁgE&vi(x) (h=0, 1,..., n), (4.28)

and

r(L) = n+2 max deg vi- (4.29)

Oilin,vi¥0

Thind special case :

e qn(—l) # 0 and qn(l) # 0.
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(4.30)

' n .., D=
Adry  E pediy Y 5
o) =omfq - ] 0" ¢k[<qh+jf>(h)J'
i=1 h=0
(4.31)
and
r(L) = 2042 max  (deg qi—i). (4.32)

Ofiin,qiio

A symetry of e rolakaon (11F) s bt

discovered which seems to be useful  for  check
purposes. We prove the following

THEOREM 4.2, Operator (4.14) has the form

2. (ET™

=T
= (2k+2)Hd+l
L= (2k )d_1 B

[ e

in which r = r(L),

u = s+ max (deg q.-1),
; i
Oi;in,qiio

and Agy, Ayseeey Ar are such that

. (~k=2x~d) (k =0, Liisesl)s

d
A (k) = - A
]

Proof. We give a short sketch. Let P represent
any of the operators

(e) (e)
Pd : Rd »

(e) gle) . s
S (h=0, 1L,..0y, &)

= B

It can be shown by induction on d that

P=(2k+2l+d+l);il ]

1n whiech

d

wi(k) = ¢ nd_i(—k-Zk—d) = 0 Lyeyey 6Fs

Further, let U stand for any of the following

operators :

8=1 n-g

N §=1 g (e)

L D7 Tq.(X), LV (@),
s i hai h h

b, )
From (3.8), (3.9) and (3.22),

2& sop
U= 7 ¢ e,
j=0 J

where

t = st max

(deg qi-i)
ieJ,qiio

and wj are such that
¢j(k) = wzt_j(-k—zx) (3 =0, Liyeans 8.

Here J is [0,1,...
-5 ca )

,s-1}, [o+l,0+2,...,n}
0} [ho= 05 Lo

or [s+h ,
, d), respectively.

Now, it can be checked that

Rev. Téc. Ing., Univ. Zulia Vol. 8, No. 1, 1985



d+2t

U= (i) ] K GO
1=0

and that

X, (k) = -°X (-k-2a-d) (1 =0, 1,...

d+2t-1
Using this in (4.14), the result follows.

5. EXAMPLE

Let us consider the evaluation of the integral

1

1=/ (l—t)atBJp(Zat)g(t)dt, (5.1)
0
where J. is the Bessel function of the first kind

and of order p, and where a>-1, pg>-p-1, a>0 are
real numbers. We assume that g is a smooth function
which can be approximated accurately by a polynomial
of degree N, expressed in the form

2,0 2t-1) (0<t-1). (5.2)

0

p(t)

h~—12Z

ke

Replacing g by p in (5.1), we obtain

N
1% a | (1-0)%Ps (2ar)c) (2e-1)dt
k p k
k=0 0
gt N .
27 B ) a 1w (5.3)
k=0

where
wiwy = (1—x)“<1+x)%p<a(1+x>). (5.4)

The success of this method of numerical in-
tegration, which is a natural generalization of the
59-called modified CIlenshaw-Curtis method due to
Piessens and Branders §I4Q; depends on the abilit

ep. r ot =
to compute the modified mbments. my [w], ..._,méLWJ

accurately, These moments can be obtained from a
Tecurrence relation, judiciously employed, which is

constructed using Theorem 4.1.
Function (5.4) satisfies

[A-x)%]" + [(1x2) (eyxte)u] !

(5.5)

+ {52(1-}(2)2-[)2(1-X)2+C3X2+Cux+c5]w =0,

where
c1 = 20423+7,  cp= 2a-28+l,  c3 = (atB+3)2,
ey = 2(a+l)y-2(B+1)2, c5 = (o-p+l)2-23-4.

Now, it is easy to observe that we have the first
special case discussed at the end of Section 4. We
obtain, therefore, the eighth order recurrence re-
lation

(5.6)

~ >
—
£
=y
[}
o
™

where (cf. (4.22), (4.25))

L = a2(1-X2)2+(2-pH(I1-X) %+ (c3-¢c} ) X?

+(cy-cotey)X+(cptes) I (5.7)

M G-y x= (e s

From (3.9) and (3.21), (5.6) is a seven-term re-
lation of the form
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5
Kc,(k)mk_l;_w_i + -E Kj(k)m£—3+jkwj
=1
(5.8)
+ Ks(k)mk+uLwJ = 0,
in which
Kj(k) = Ks_j(—k-ZA) (G = 05 Linesg 6)s

In particular, the integrals

obey

r

2_ g r & ~ A% 1 R
a ‘k-qLWJ+AL(k_a_b_3)2‘p“aAJEk_2~WJ (5.10)

+8[2(a+1)2—2(5+l)2_(2a_25+l)k+2p2]rk_l[w]

—2[4k2—12(a—g+1)2—16(a+s+as)+12p2—3a7]rk"w]
. 2
+8[2(a+1) 5 -2 (B+1) +(2a-2s+1>k+zp?jxk+l[wj

+4[(k+a+5+3)2—p2-a2]rk+2[w]+a2r W =0,

oty b

Putting « = 0 and B = 0, equation (5.12) reduces tc
a recurrence relation obtained in [14] for the in-
tegrals

In the cited reference, the asymptotic forms for a
fundamental set for the difference equation (5.10)
were found and compared with the asymptotic behay-
lour of (5.11). The conclusion was that (5.11) can
be computed using (5.10) in the forward direction.

REFERENCES

1) BLUE, J.L. : "A legendre polynomial integral",
Math. Comp. 33 (1979), pp. 739-741.

2) BRANDERS, M. : "Toepassingen Van Chebyshev-
veedtenmen An de numenieke integratie". Thesis,
Univ. of Leuven, 1976.

3) GATTESCHI, L.

: "On some orthogonal — polynomial

integrals”. Math. Comp. 35 (1980), pp. 1291-1298.

4) GAUTSCHI W. : "On the comstruction of Gaussian
nukes from modified moments”.  Math. Comp. 24
(1970), pp. 245-260.

5) GAUTSCHIL, W. : "Questions of numerdial condition
helated to polynomials) in 'Symposium on  Recent
Advarnces an Numerial Analysis', (C. de Boor and
G.H. Golub, eds.), Academic Press, New York,
1978, pp. 45-72.

6) GAUTSCHI, W, : Remark on the preceding paper: "A
Legendre polynomial integhal" by J.L.Blue, Math.
Comp. 33 (1979), pp. 742-743.

7) KALLA,S.L. and CONDE,S. : "On a Legendrne  poluy-
nomial integral". Tamkang J. Math. 13 (1982) pp.
49-52.

8) KALLA, S.L., CONDE, S. and LUKE, Y.L.:"Integrals
of Jacobdl functions”. Math. Comp. 38 (1982), pp.
207-214.

9) LAURIE, D.P. and ROLFES, L. : "Computation 04
Gaussdian quadrnature nules §rom modified moments"
J. Comp. Appl. Math. 5 (1979), pp. 235-243.

10

~

LEWANOWICZ, S. : "Construction of a reciwirence
nelation for modified moments". J. Comp. Appl.
Math. 5 (1979), pp. 193-206.

1.1

~

LEWANOWICZ, S. : "Recwwrence helations fon hy-
pergeometrnic functions of unit argument”. Math.
Comp. 45 (1985).

12) LUKE, Y.L. : "The Special Functions and Thein
Apphoximations"”, Academic Press, New York,1969.

- 59 -

Rev. Téc. Ing., Univ. Zulia Vol. 8, Wo. 1, 1985


http:FU.n.C.WM
http:Mgu.me.f�
http:Re.c.u.Jt!i.e.nc
http:Com�:u.ta.t.wn
http:c.on.d-i.Wn
http:te.la.te
http:ouhogon.al
http:reduc.es

13)

14)

13)

16) SACK, KR.A. and DONOVAN, A.F. :

PIESSENS, R. and BRANDERS, M. : "The evaluaticn
and application of some modified moments”, BIT
13 (1973), pp. 443-450.

PIESSENS, R. and BRANDERS, M. : " Modd{ied
CLenshaw-Cuntis method fon the computation  of
Bessel function integrakls™, BIT 23 (1983), pp.
370-381.

ROBERTSON, N. : "An ALTRAN progham for {inding

o reeursion formila o Hhe Cegenbauer moments
of @ function", Nat. Res. Inst. for Math. Sci.,
CSIR Spec. Rep. SWISK 12, Pretoria, 1979.

" An  algorithm

17)

18)

19) WIMP, J. :

for Gaussian quadrature given modified moments"
Numer. Math. 18 (1972), pp. 465-478.

WHEELER, J.C. : "Mod{{<ied moments and Gaussdian

quadratures"”. Rocky Montain J. Math. 4 (1974),
pp. 287-296.

WHEELER, J.C. and BLUMSTEIN C. : " Modifded
moments for hawmonic s0lids". Phys. Rev. B6

(1972), pp. -4380-4382.

" Computation with Recwwrence Refa-
ticns". Pitman Press, Boston, 1984.

Recibido el 28 de manzo de 1985

- 60 -

fev, Téc, 1ng,, Univ, Zulia Vol. 8, Yo. L, 1985


http:qu.adJta.:tJ.ut

