Rev. Téc. Ing., Univ. Zulia Vol. II, No. 1, 1988

J.J. Bentancor and J.C. Fariña Departamento de Análisis Matemático Facultad de Matemáticas Universidad de La Laguna La Laguna (Tenerife) Canary Islands, Spain

ABSTRACT

In this papaer we study the image of a certain space of smooth functions by a modified operator of the Hankel transform defined by

$$s_{\eta,\alpha}\{f(x)\}\ (y) = y^{\alpha} \int_{0}^{\infty} x^{1-\alpha} J_{2\eta+\alpha}(xy) \ f(x) \ dx$$

For every $\eta,~\alpha\in R,$ this space of functions is equipped with a locally convex topology. These spaces with be denoted $D_{\eta,\alpha}.$ We prove that $S_{\eta,\alpha}$ is an isomorphism from $D_{\eta,\alpha}$ onto a space of entire functions denoted by $G_{\eta,\alpha},$ if the three inequalities $\eta > -1$ $2\eta+\alpha\geq 0,~2\eta+2\alpha\geq 0$ are true. The $S_{\eta,\alpha}$ -transform is extended to the dual spaces $D^*_{\eta,\alpha}$ and $G^*_{\eta,\alpha}.$ Finally we solve a functional equation involving the Bessel type operator

$$\Delta_{n,\alpha} = x^{-2\eta-1}Dx^{2(2\eta+\alpha)+1}Dx^{-2\eta-2\alpha}$$
.

RESUMEN

En este trabajo se estudia la imagen de algún espacio de funciones lisas mediante un operador modificado de Hankel definido como

$$s_{\eta,\alpha} \{f(x)\} (y) = y^{\alpha} \int_{-\infty}^{\infty} x^{1-\alpha} J_{2\eta+\alpha}(xy) f(x) dx$$

Para cada η , $\alpha \in R$, este espacio de funciones es equipado con una topología convexa localmente. Estos espacios se denota por $D_{\eta,\alpha}$. Se demuestra que $S_{\eta,\alpha}$ es un isomorfismo de $D_{\eta,\alpha}$ "onto" un espacio de funciones enteras, denotado por $G_{\eta,\alpha}$, si las desiguales $\eta > 1$, $2\eta + \alpha \geq 0$, $2\eta + 2\alpha \geq 0$ son ciertas. La transformada $-S_{\eta,\alpha}$ es extendida a espacios duales $D_{\eta,\alpha}^{\dagger}$ y $G^{\dagger}_{\eta,\alpha}$. Finalmente se resuelve una ecuación funcional que involucra el operador de tipo Bessel

A MODIFIED OPERATOR OF THE HANKEL TRANSFORMATION ON CERTAIN SPACES OF FUNCTIONS

$$\Delta_{\eta_{\bullet}\alpha} = x^{-2\eta-1} Dx^{2(2\eta+\alpha)+1} Dx^{-2\eta-2\alpha}$$

1. INTRODUCTION

The Hankel transformation defined by

$$F(y) = h_{U}\{f(x)\}\{y\} = \int_{0}^{\infty} xJ_{U}(xy)f(x) dx$$
 (1)

where J_{μ} is the Bessel function of the first $% J_{\mu}$ and order $\mu,$ and several of its variants have been extensively studied in the last years.

An inversion formula for this integral transformation was derived by G.N. Watson [10] in the following

Theorem 1 : If $\sqrt{x}f(x) \in L_1(0,\infty)$, f(x) is of bounded variation in a neighborhood of the point

$$x=x_0>0, \mu \ge -\frac{1}{2}$$
 and F(y) is defined by (1), then

$$\frac{1}{2} (f(x_0+0)+f(x_0-0))=h^{-1} \{F(y)\}(x)=$$

$$=\int_{0}^{\infty} F(y)yJ_{\mu}(x_{0}y) dy$$

Another useful result is the following Parseval's formula :

Theorem 2 : If the functions f(x) and g(x) satisfy the conditions in Theorem 1 and if F(y) and G(y) denote their Hankel transforms of

order
$$\mu \ge -\frac{1}{2}$$
, then

$$\int_{0}^{\infty} xf(x)g(x)dx = \int_{0}^{\infty} yF(y)G(y)dy$$

J.M. Mendez [7] extended the h_{μ} -transformation to a space of generalized functions of slow growth.

He considered (together with the $h_{\mathcal{U}}$ -transform) the integral transformation defined by

$$H_{\mu}\{f(x)\}\ (y) = y \int_{0}^{\infty} J_{\mu}(xy)f(x)dx$$

closely connected with (1). h_μ and $~H_\mu$ the mixed Parseval equation that can be from Theorem 2 : satisfy

Theorem 3 : Let $\mu \ge -\frac{1}{2}$. If $\sqrt{x}f(x) \in L_1(0,\infty)$ and

 $\sqrt{yG_2}(y) \in L_1(0,\infty)$ then

$$\int_{0}^{\infty} f(x)g(x)dx = \int_{0}^{\infty} F_{1}(y)G_{2}(y)dy , \qquad (2)$$

where
$$F_1(y) = h_{\mu}\{f(x)\}\ (y) \text{ and } G_2(y) = H_{\mu}\{g(x)\}\ (y).$$

Mendez introduced two new spaces $H_{\mu,1}$ and $H_{\mu,2}$ of testing functions with a structure similar to the space H_{μ} defined by A.H. Zemanian [11], h_{μ} and $H_{\mu,1}$ are automorphism onto $H_{\mu,1}$ and $H_{\mu,2}$, respectively.

As a generalization of the Parseval's equation (2), Mendez defined the generalized h'_{\mu}-transformation h'_{\mu}f for f \in H'_{\mu},_ as the adjoint of the classical H'_{\mu}-transform, so that,

$$\langle h_{\mu}^{\dagger}f,\psi \rangle = \langle f,H_{\mu}\psi \rangle$$
, for every ψ H _{μ ,2} .

Also, for every f H', the H' transformatof f was defined by the relation μ

$$$$
 = $$, for every $^{\prime}\psi$ H _{μ ,1} .

In a recent paper [3] we define a new generalized Hankel transformation following the ideas presented by L.S. Dube and J.N. Pandey [4]. We introduced a space $L^{\hat{\Omega}_{+}\hat{\beta}}$ of testing functions such that the function xJ (xy) is in $L^{\hat{\Omega}_{+}\hat{\beta}}$ for every y>0. Then, we defined the h_{μ}^{\dagger} -transform $h_{\mu}^{\dagger}f$ of f, for every $f \in (L^{\hat{\Omega}_{+}\hat{\beta}})^{\dagger}$, as

$$(h_{\mu}^{\dagger}f)(y) = \langle f(x), xJ_{\mu}(xy) \rangle$$
, for every $y>0$

We derived a distributional inversion formula this transformation. Moreover, the generalized Abelian theorems due to Zemanian [12] were extended to the space $(L_{\mu}^{0},\beta)'$ of generalized functions.

In this paper, we consider the modified operator of the Hankel transform defined by

$$F(y) = S_{\eta,\alpha}\{f(x)\} (y) = y^{\alpha} \int_{0}^{\infty} x^{1-\alpha} J_{2\eta+\alpha}(xy)f(x)dx$$
(3)

if $2n+\alpha \ge -\frac{1}{2}$.(S_n is a variant of the operator introduced by I., α N. Sneddon [9]). In certain theoretical investigations is more convenient to use S_n, α instead of the operator h_{μ}.

We study the image by S_n , α of a certain space of functions defined on $(0,\infty)$ having superiorly bounded support. Said space is endowed with a locally convex lopology for every n and α . We denoted these spaces by D_n , α . We prove that the S_n , α -transform is and isomorphism form D_n , α onto a certain space G_n , α of entire functions, for $2n+2\alpha \ge 0$, $2n+\alpha \ge 0$ and $n \ge 1$. The S_n , α -transformation is extended to the dual spaces of D_n , α and G_n , α . Moreover, a functional differential equation involving the Bessel type operator type operator

$$\Delta_{\eta,\alpha} = x^{-2\eta-1} Dx^{2(2\eta+\alpha)+1} Dx^{-2\eta-2\alpha} \text{ is solved.}$$

Finally, we state an open problem related to this paper.

2. THE SPACES OF FUNCTIONS $D_{\eta,\alpha}$ AND $G_{\eta,\alpha}$ AND THE $s_{\eta,\alpha}$ transformation.

J.L. Criffith [6] proved a theorem analogous to Paley-Wiener Theorem concerning the ordinary Hankel transformation.
Through some changes of variables his theorem takes on the following form

Theorem 4 : Let

$$G(y) = 1.1.m. y^{\alpha} \int_{0}^{\infty} x^{1-\alpha} J_{2n+\alpha}(xy) f(x) dx, 2n+\alpha \ge -\frac{1}{2}$$

where J_{μ} is the Bessel function of the first $% \left(1\right) =1$ kind and order $\mu .$ Then

6) f(t) is zero almost all t>A, and

β)
$$t^{-\alpha + \frac{1}{2}}$$
 f(t) is in L₂(0,A)

when, and only when

i) $s^{\alpha}G(s)$ is analytic in s for $0 \le args \le \pi$, $|s| > \epsilon > 0$,

ii)
$$s^{-\Omega + \frac{1}{2}}G(s) = o(e^{A \text{ Im}s})$$
, as $|s| \rightarrow \infty$, Im $s > 0$

iii)
$$G(u) = G(ue^{i\pi})$$
 , $u>0$,

iv)
$$u^{-\alpha} + \frac{1}{2}$$
 $G(u)$ is in $L_2(0,\infty)$, and

v)
$$|s^{-2\eta-2\alpha}G(s)| = o(1)$$
 as s+0

This statement is the background of this paper.

2.1. THE SPACES OF FUNCTIONS ${\rm D}_{\eta,\alpha}$ (a) AND ${\rm D}_{\eta,\alpha}$

Let a denote a positive real number and η and α any real numbers. Then we define $D_{\eta,\alpha}(a)$ as the space of functions $\psi(x)$ which are defined and smooth on $0 < x < \infty$, such that $\psi(x) = 0$ for $a < x < \infty$, and

$$\lim_{x\to 0} D^{k}(x^{-2\eta-2\alpha} \Delta_{\eta,\alpha}^{m} \psi(x)) = 0, \text{ for every } k, m \in \mathbb{N}.$$

where
$$\Delta_{\eta,\alpha} = x^{-2\eta-1}Dx^{2(2\eta+\alpha)+1}Dx^{-2\eta-2\alpha}$$
 and I=(0, ∞).

We assign to D (a) the topology generated by the countable multinorm $\{\gamma_{\eta,\alpha}^k\}_{k\in\mathbb{N}}$, $D_{\eta,\alpha}(a)$ is a Hausdorff space that satisfies the first axion of countability. The dual space $D_{\eta,\alpha}^k(a)$ consists of all continuos linear functionals on $D_{\eta,\alpha}(a)$. The dual is a linear space to which we assign the weak topology generated by the seminorms $\{\xi\psi\}\psi$, when $\xi\psi(f)=|\langle f,\psi\rangle|$ and ψ varies through $D_{\eta,\alpha}(a)$.

If $0 \le a \le b$, then $D_{\eta,\alpha}(a) \subset D_{\eta,\alpha}(b)$, and the topology of $D_{\eta,\alpha}(a)$ is identical to the topology induced in it by $D_{\eta,\alpha}(b)$. Hence, we can construct the strict countably union space $D_{\eta,\alpha} = UD_{\eta,\alpha}(a)$.

2.2. THE SPACES OF FUNTIONS ${\sf G}_{\eta,\alpha}$. (a) AND ${\sf D}_{\eta,\alpha}$.

Let now η , α , a be real numbers, with a>0 and $2\eta+\alpha>0$. We define a topological linear space C (a) as follows. ϕ is a member of $G_{\eta+\alpha}(a)$ if and only if

- a) $s^{-2\eta-2\alpha}\phi(s)$ is an even entire function
- b) for every keN, $|s^{k-C}\phi(s)| < C_k e^{a|\text{Im } s|}$ for |s| enough large, C_k being a positive constante depending on ϕ .

c)
$$\int_{0}^{\infty} s^{2\eta+1+k} \phi(s) ds = 0$$
, for $k = 0, 2, 4, ...$ and

d)
$$|s^{-2\eta-2\alpha}\phi(s)| = 0(1)$$
 as s+0.

 $^G_{\eta,\alpha}(a)$ is endowed with the topology generated by the multinorm $\{w_{\eta,\alpha}^k\}_{k\in\mathbb{N}}$ where

$$w_{\eta,\alpha}^{k}(\phi) = \sup_{s \in C} |s^{k-\alpha}\phi(s)| e^{-a|\text{Im}s|}$$
 , for every $k \in \mathbb{N}$

(Note that
$$w_{\eta,\alpha}^k(\phi)<\infty$$
 , for every $\phi\in G_{\eta,\alpha}(a)$ and $k\in\mathbb{N}$).

 $G_{\eta,\alpha}(a)$ is a locally convex, Haudorff topological $^{\eta,\alpha}$ vector space. The dual space of $G_{\eta,\alpha}(a)$ is denoted by $G_{\eta,\alpha}^{\dagger}(a)$ and is equipped with the weak topology.

Moreover, if $0 \le a \le b$, then $G_{\eta,\alpha}(a) \le G_{\eta,\alpha}(b)$ and the topology of $G_{\eta,\alpha}(a)$ is stronger than the one induced in it by $G_{\eta,\alpha}(b)$. This allows to define the countably union space.

2.3. THE MODIFIED OPERATOR $s_{\eta,\alpha}$.

The modified operator $\textbf{S}_{\eta,\alpha}$ of Hankel transform is given by (3).

The main result of this paper is the next one.

THEOREM 5: Let η , α , a be real numbers, with a>0, $2\eta+\alpha\geq0$, $2\eta+2\alpha\geq0$ and $\eta>-1$. $S_{\eta,\alpha}$ is an algebraical and topological isomorphism of $D_{\eta,\alpha}(a)$ onto $G_{\eta,\alpha}(a)$.

PROOF : Let Ψ be in $D_{\eta,\alpha}(a)$. We denote

$$\begin{aligned} & \phi(s) = S_{\eta,\alpha} \{ \psi(x) \} (s) = s^{\alpha} \int_{0}^{\infty} t^{1-\alpha} \psi(t) J_{2\eta+\alpha}(st) dt = \\ & = s^{2\eta+2\alpha} \int_{0}^{\infty} \psi(t) t^{2\eta+1} b_{2\eta+\alpha}(ts) dt \end{aligned}$$

where $b_{\nu}(z)=z^{-\nu}J_{\nu}(z)$. Since b_{ν} is an even entire function, then $v_s-2\eta-2\alpha_{\varphi}(s)$ is also an even entire function.

The following operational ruler holds :

$$s_{n,\alpha} \{ \Delta_{n,\alpha}^{k} \psi(t) \}$$
 (s) = $(-s^2)^k s_{n,\alpha} \{ \psi(x) \}$ (s) (4)

for every $k \in \mathbb{N}$ and $\psi \in D_{\eta,\alpha}(a)$.

The function $\psi(t)$ satisfies the conditions δ) and β) given in Theorem 4 and in virtue of (4) we get

$$-\alpha + \frac{5}{2}$$
 $|s \quad s_{\eta,\alpha}\{\psi(t)\}(s)| =$

$$\mid s \mid s \mid S_{\eta_* \alpha} \{ \Delta_{\eta_* \alpha} \psi(t) \} \quad (s) \mid \leq C \exp(a \mid \text{Im } s \mid)$$

for |s| enough large. Hence, the condition (b) is satisfied for k=0,1,2.

Also

$$\left|s^{-\alpha+\frac{9}{2}}S_{\eta,\alpha}\{\psi(t)\}(s)\right|=$$

$$|\mathbf{s}^{-\alpha+\frac{1}{2}}\mathbf{s}_{n,\alpha}\{\Delta_{n,\alpha}^{2}\psi(\mathbf{t})\}(\mathbf{s})|\leq C'\exp(\mathbf{a}|\mathbf{Im}\;\mathbf{s}|)$$

for |s| enough large. Hence the condition b) is fulfilled for k=3,4.

By induction of k we can see that $\varphi(s)$ satisfies b).

By invoking the inversion formula we can obtain

$$\psi(t) = t^{2\eta+2\alpha} \int_{0}^{\infty} b_{2\eta+\alpha} (ts) s^{2\eta+1} \phi(s) ds$$

Differentiation under the integral sign leads to

$$D_{t}^{k}(t^{-2\eta-2\alpha}\Delta_{\eta,\alpha}^{m}\psi(x)) =$$

An application of Lebesgue's dominated convergence Theorem and by letting $t\!\to\!0$ allows to write

$$0=\lim_{t\to 0} D^{k}(t^{-2\eta-2\alpha}\Delta_{\eta,\alpha}^{m}\psi(x))=$$

$$b_{2\eta+\alpha}^{(k)}(0) \int_{0}^{\infty} s^{2\eta+1+2m+k} \phi(s) ds$$

(note that the differentiation under the integral sign is justified).

Since
$$b_{2\eta+\alpha}^{(k)}(0)\neq 0$$
, for k=0,2,4,..., then

 $\int_0^\infty s^{2\eta+1+k} \phi(s) \, ds = 0, \text{ for every nonnegative integer } k. \text{ Therefore, } \phi \text{ satisfies the condition c).}$

The property d) is equal to v) in Theorem 4.

On the other hand, let φ be in $\boldsymbol{c}_{\eta\,,\alpha}(\boldsymbol{a}).$ We denote

$$\psi(t) = t^{2\eta+2\alpha} \int_0^\infty s^{2\eta+1} B_{2\eta+\alpha}(st) \psi(s) ds$$

Again, by differentiation under the integral sign and in virtue of the condition c),

$$\lim_{t\to 0}\,D^k(t^{-2\eta-2\alpha}\!\Delta^m_{\eta_+\alpha}\psi(t))\!=\!0, \text{ for } k,\; m\in\mathbb{N}.$$

Moreover, the contitions a)-d) imply the properties 1)-v) in Theorem 4, hence $\psi(t)=0$, for t>a.

Therefore
$$\psi(t) \in D_{\eta,\alpha}(a)$$
.

To complete the proof of this theorem we now prove the continuity of the mappings

$$S_{\eta,\alpha}$$
 and $S_{\eta,\alpha}^{-1}$.

Assume $k \in \mathbb{N}$, $\psi \in D_{\eta,\alpha}(a)$ and denote

$$\phi(s) = S_{n,\alpha}\{\psi(t)\} (s).$$

If $2n+\omega+k=2p$ for a certain nonnegative integer p, then, by applying (4) one has

$$s^{k-\alpha}\phi(s) = s^{k+\alpha+2\eta}$$

$$\int_{0}^{\infty} t^{2\eta+1} b_{2\alpha+\eta}(ts) \psi(t) dt =$$

$$= \int_{0}^{a} t^{2\eta+1} b_{2\eta+\alpha}(st) \Delta_{\eta,\alpha}^{p} \psi(t) dt$$

Hence, since $|\exp(-a|\operatorname{Im} s|)b_{\mathcal{V}}(xs)| \leq C_{\mathcal{V}}$, for every $s \in \mathbb{C}$ and $x \in I$, where $C_{\mathcal{V}}$ is a suitable positive constant, we get

$$\sup_{s \in C} |s^{k-\alpha} \phi(s)| \exp(-a|\operatorname{Im} s|) \leq \underset{t \in I}{\operatorname{M}} \sup_{\eta, \alpha} |\Delta_{\eta, \alpha}^{p} \psi(t)|$$
(5)

where M is a positive number.

Moreover, if $2\eta + \alpha + k$ is not even it is enough to note that

$$|s|^{2\eta+\alpha+k} \le |s|^p + |s|^j$$

where p and j are even nonnegative integers such that $p \le k+2n+\alpha \le j$, proving in this case an inequality similar to (5).

Therefore $S_{\eta,\alpha}\colon D_{\eta,\alpha}(a)\to G_{\eta,\alpha}(a)$ is a continuous linear mapping.

Assume now $\phi \in G_{\eta,\alpha}(a)$ and let

$$\psi(t) = S_{\eta,\alpha}^{-1}\{\phi(s)\}$$
 (t). We can write

$$\Delta_{n}^{k} \alpha^{\psi(t)=t^{2\eta+2\alpha}} \int_{0}^{\infty} s^{2\eta+1} b_{2\eta+\alpha}(st) (-s^{2})^{k} \phi(s) ds$$

for every k \in N. By taking into account that b $_{\rm U}$ (z) is bounded on (0, $^{\infty}$), we get

$$\left|\Delta_{\eta,\alpha}^{k}\psi(t)\right| \leq K \int_{0}^{\infty} \frac{s^{2\eta+1+\alpha}}{1+s^{2\eta}} \left\{s^{2k-\alpha+2p} + s^{2k-\alpha}\right\} \left|\phi(s)\right| ds \leq C \left(s^{2\eta+1+\alpha}\right)$$

$$\leq K' \{ \sup_{s \in I} |s^{2k-\alpha+p} \phi(s)| + \sup_{t \in I} |s^{2k-\alpha} \phi(s)| \} \leq C$$

$$\leq K' \left[\sup \left| s^{2k-\alpha+p} \phi(s) \right| \exp(-a \left| \operatorname{Im} s \right|) + s \in C \right]$$

+
$$\sup_{s \in C} |s^{2k-\alpha}\phi(s)| \exp(-a|\operatorname{Im} s|)$$

where p is nonnegative integer such that $p-(2\alpha+\eta+1)>1$, and K and K' are suitable positive constants.

Hence, the mapping
$$S_{\eta,\alpha}^{-1} = S_{\eta,\alpha}$$
:

$$G_{\eta,\alpha}(a) \rightarrow D_{\eta,\alpha}(a)$$
 is continuous.

This theorem can be extended to the respective union spaces.

Theorem 6: This transformation $S_{\eta,\alpha}$ is an isomorphism of $D_{\eta,\alpha}$ onto $G_{\eta,\alpha}$, its inverse is $S_{\eta,\alpha}^{-1} = S_{\eta,\alpha}$, provided that $\eta > -1$, $2\eta + \alpha \geq 0$ and $2\eta + 2\alpha \geq 0$.

3. A GENERALIZED TRANSFORMATION S' 17,02

Let $u \in D^1_{\eta_+,\alpha}$. We define the generalized transformation $S^1_{\eta_+,\alpha}u$ of u as the adjoint of the classical transform, so that

$$\langle s_{\eta,\alpha}^{\dagger}u, \phi \rangle = \langle u, s_{\eta,\alpha} \phi \rangle$$

for every $\phi \in G_{\Pi,\alpha}$.

Also, for every $v \in G_{\eta_1,\alpha}^+$ the generalized transformation $S_{\eta_1,\alpha}^+ v$ of v is defined by

$$\langle s_{\eta,\alpha}^{\dagger} v, \psi \rangle = \langle v, s_{\eta,\alpha} \psi \rangle$$

for each $\psi \in D_{\eta,\alpha}$.

The following statement can be easily proved by invoking Theorem 6.

Theorem 7 : The operator $S_{\eta,\alpha}^{i}$ is an isomorphism of $D_{\eta,\alpha}^{i}$ on to $G_{\eta,\alpha'}^{i}$ provided that $\eta>-1$, $2\eta+\alpha>0$ and $2\eta+2\alpha>0$.

4. OPERATIONAL CALCULUS

We now prove a generalized operational ruler analogous to the classical one (4). This operational ruler is useful in solving of certain generalized differential equations.

Theorem 8 : Let u be in $D^*_{\eta_*\alpha^*}$ then

$$S_{\eta,\alpha}^{\dagger}(\Delta_{\eta,\alpha}^{*}u) = -s^{2}S_{\eta,\alpha}^{\dagger}u$$

where $\Delta_{n,\alpha}^*$ denotes the adjoint operator of $\Delta_{n,\alpha}$.

PROOF: For every ψ in $D_{\eta,\alpha}$, one has

$$\langle \Delta_{\eta,\alpha}^* \mathbf{u}, \psi \rangle = \langle \mathbf{u}, \Delta_{\eta,\alpha} \psi \rangle$$

By using the operational ruler (4), we get

$$\langle s_{\eta_{*}\alpha}(\Delta *_{\eta_{*}\alpha}u), \psi \rangle = \langle u, \Delta_{\eta_{*}\alpha}s_{\eta_{*}\alpha}\psi \rangle = \langle u, s_{\eta_{*}\alpha}(-s^{2}) \psi \rangle = \langle u, s_{\eta_{*}\alpha}(-s^{2}) \psi \rangle$$

$$<-s^2S^*_{\eta,\alpha}u,\psi>$$
 , for every $\psi \in G_{\eta,\alpha}$.

We consider the differential equation of the form

$$P(\Delta_{\eta,\alpha}^*)u = g \tag{6}$$

where P is a polynomial and $2\eta+2\alpha\geq 0$, $2\eta+\alpha\geq 0$ and $\eta>-1$. g is in $D_{\eta,\alpha}^{\dagger}$. A formal application of the $S_{\eta,\alpha}^{\dagger}$ -transform η leads to

$$S_{\eta,\alpha}^{\dagger}u = \frac{1}{P(-s^2)} S_{\eta,\alpha}^{\dagger}g$$

and invoking the inversion formula we get

$$u = S_{\eta,\alpha}^* \left\{ \frac{1}{P(-s^2)} S_{\eta,\alpha}^* S^{\frac{1}{2}} \right\}$$
 (7)

We now introduce the following space of func- .

$$A_{\eta,\alpha, P} = \{ \psi \in C^{\infty}(I) / \frac{1}{P(-s^2)} S_{\eta,\alpha} \psi \in G_{\eta,\alpha} \}$$

 $A_{\eta,\alpha,P}$ is equipped with the topology induced in it by $G_{\eta,\alpha}$ (namely, a sequence $\{\psi_{\nu}\}_{\nu\in\mathbb{N}}$ converges to ψ , as $\nu^{+\infty}$ in $A_{\eta,\alpha,P}$ if, and only if, $\frac{1}{P(-s^2)}S_{\eta,\alpha}\psi_{\nu}$

converges to
$$\frac{1}{P(-s^2)}$$
 $S_{\eta,\alpha}\psi$ as $\nu \to \infty$,

Note that $A_{\eta,\alpha,P}$ is algebraically contained in $D_{\eta,\alpha}$

The functional u given by (7) is in $^{A}_{\eta,\alpha,P}$. In effect, let $\{\psi_{\nu}\}_{\nu\in\mathbb{N}}$ be a sequence in $^{A}_{\eta,\alpha,P}$, which converges to $\psi\in A_{\eta,\alpha,P}$, as $\nu\to\infty$. Then

$$<_{\mathbf{u}} \psi_{\mathbf{v}} > = <_{\mathbf{g}, \mathbf{S}_{\eta, \alpha}} \{ \frac{1}{\mathbf{p}(-\mathbf{s}^2)} \mathbf{S}_{\eta, \alpha} \psi_{\mathbf{v}} \} \} >$$

$$>_{\mathbf{v}} + \infty <_{\mathbf{g}, \mathbf{S}_{\eta, \alpha}} \{ \frac{1}{\mathbf{p}(-\mathbf{s}^2)} \mathbf{S}_{\eta, \alpha} \psi \} > = <_{\mathbf{u}}, \psi > .$$

since
$$\frac{1}{P(-s^2)} S_{n,\alpha} \psi \rightarrow \frac{1}{P(-s^2)} S_{n,\alpha} \psi$$
 as

$$v \rightarrow \infty$$
 in $G_{\eta,\alpha}$, $S_{\eta,\alpha}$ is

a continuous mapping from $\textbf{G}_{\eta,\alpha}$ onto $\textbf{D}_{\eta,\alpha}$ and $\textbf{g} \in \textbf{D}^{\dag}_{\eta,\alpha}.$

Moreover, one can show that :

$$(7) \qquad \langle P(\Delta^*_{\eta,\alpha})u,\psi \rangle = \langle u,P(\Delta_{\eta,\alpha})\psi \rangle =$$

$$= \langle g,S_{\eta,\alpha}\{\frac{1}{P(-s^2)}S_{\eta,\alpha}\{P(\Delta_{\eta,\alpha})\psi\}\} \rangle =$$

$$= \langle g,\psi \rangle, \text{ for every } \psi \in A_{\eta,\alpha,P}.$$

Hence, u is a solution for (6) in $A_{\eta,\alpha,P}^{\dagger}$

REMARK: If $\eta=\mu$, $\eta=-\mu$, $S_{\eta,\alpha}$ coincides with the Hankel-Schwartz transform (see [1]). In that case, the results obtained in this paper reduce to that presented in our previous paper [2].

An open problem.

Thes spaces $D_{\eta,\alpha}$ are different to the space D(I) introduced by L. Schwartz [8]. To describe the behaviour of the operator $S_{\eta,\alpha}$ on D(I) is an open problem.

REFERENCES

- [1] ALTENGURG, G.: "Bessel transformationen in Raumen von Grund-functionen uber dem intervall Ω = {0, ∞ } und derem dual raumen". Math. Nach. 108(1982), 197-218.
- [2] BENTANCOR, J.J.: "The Hankel-Schwartz transformation of functions of compact support". Preprint N°5, Department of Math. Anal. University of La Laguna, Tenerife, Spain, 1987.
- [3] BENTANCOR, J.J.: "Sobre una transformación generalizada de Hankel". Preprint N°8, Department of Math. Anal., University of La Laguna, Tenerife, Spain, 1987.
- [4] DUBE, L.S. and PANDEY, J.N.: "On the Hankel transform of distributions". Tohoku Math. J. 27 (1975), 337-354.
- [5] FENYO, I.: "On the Hankel transformation of the Schwartz distributions", To appear in Stud. Hung., Vol. 22.
- [6] GRIFFITH, J.L.: "Hankel transform of functions zero autside a finite interval". J. Proc. Roy. New South Wales, 89(1955), 109-115.

- [7] MENDEZ, J.M.: "A mixed Parseval equation and the generalized Hankel transformation". To appear in Proc. Amer. Math. Soc.
- [8] SCHWARTZ, L.: "Theorie des distributions". Hermann, Paris, 1966.
- [9] SNEDDON, I.N. 1"The use of integral transforms," McGraw Hill Publishing Co.Ltd. New Delhi, 1974.
- [0] WATSON, G.N.: "A Treatise on the Theory of Bessel functions". Cambridge Univ. Press. Cambridge, England, 1966.
- [1] ZEMANIAN, A.H.: "A distributional Hankel transformation". SIAM Appl. Math. 14(1966),561-576.
- [2] ZEMANIAN, A.H.: "Some Abelian theorems for the distributional Hankel and K-transformations", SIAM J. Appl. Math., Vol. 14, N°6, (1966) 1255-1265.
- [3] ZEMANIAN, A.H.: "Generalized Integral Transformation", Interscience Publishers, New York, 1968.

Recibido el 26 de Octubre de 1987