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ABSTRACT

In this papaer we study the image of a certain
space of smooth functions by a modified operator of
the Hankel transform defined by

sn.a{f(x)} (y) = y* { xl-c-lzm(xy) f(x) dx

For every N, G€R, this space of functions 1s equi-
pped with a locally convex topology. These spaces
with be denoted Dy q. We prove that Sp g is an iso-
morphism from Dp o onto a space of entire functions
denoted by Gp o, if the three inequalities n > -1
2m+a>0, 220> 0 are true. The Sy o -transform is
extended to the dual spaces D',  and G'p,g. Final-
ly we solve a functional equation involving the
Bessel type operator

An " x-zn—lmz(Zma)-nD x-zn—z:; 5
’

En este trabajo se estudia la imagen de algfin’
espacio de funciones lisas mediante un operador mo-
dificado de Hankel definido como

4 o 1,
Spo LFG0) = y* S5, Gy £l

Para cada n, & € R, este espacio de funciones
es equipado con una topologia convexa localmente.
Estos espacios se denota por Dn'ﬂ' Se demuestra
que S ., es un isomorfismo de D , ‘"onto" un espa-
cio dd funciones enteras, denotado por Cp g » 8i
las desigualés 1™>-1, 2n 4a > 0, 222> 0  som
ciertas, La transformada ~Sp o e€s extendida a espa~-
cios duales Dj o ¥y G'n a- lplml.-ento se resuelve
una ecuacidn funcional que involucra el operador de
tipo Bessel

A MODIFIED OPERATOR OF THE
HANKEL TRANSFORMATION ON CERTAIN
SPACES OF FUNCTIONS

By o™ -2l o 22ma)+l | =2n-2a
»

1. INTRODUCTION

The Hankel transformation defined by
F(y) = hu{f(x))(y) ] bfn )tJ'1 (xy)f(x) dx (1)

where J, is the Bessel function of the first kind
and order }, and several of its variants have been
extensively studied in the last years.

An inversion formula for this integral trans-

formation was derived by G.N., Watson [10] in the
following

Theorem 1 : If vxf(x)€L1(0,®), £f(x) is of
bounded variation in a neigborhood of the point

x=x 20,1 > -% and F(y) is defined by (1), then

3 (EGeg#0)+ £(x=0)=h"" (F(y)} (x)=

= {" Fly)yd (xgy) dy

Another useful result is the following Parse-
val's formula :

Theorem 2 : If the functions f(x) and g(x)
satisfy the conditions in Theorem 1 and if F(y) and
G(y) denote their Hankel transforms of

order 4> = % » then

- Gl
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J.M. Méndez [7] extended the h, ~transformation
to a space of generalized functions of slow growth.

He considered (together with the hy-transform)
the integral transformation defined by

HiE@) () =y {""J“cxwf(x)dx

clesely connected with (1). h, and H satisfy
the mizxed Parseval equation that can be deduced
from Theorem 2 :

Theorem 3 : Let p> -% . If /:?f(x)eL1<0,w) and

-@Gz (y)e Ll(O.w) then

o

/ f(glx)dx = of“"FI(ymz(y)dy , (2)

where ¥, (y) = hu(f(x)} (y) and Gz(y)=Hu(g(x)} (y).

Méndez introduced two new spaces H 1 and H]_1 2
of testing functions with a structure similar o
the space H defined by A.H. Zemanian [11 . h and
fl“; are autolorphism onto H‘u-l and Hu.z. respettive-

As a generalization of the Parseval's equation
(2), Méndez defined the generalized h' -transforma-
tion hif for f€H),, as the adjoint Bf the classi-
cal Hu ~transform, %o that,

<h'fp> = <f£,H >, F H
% W )lw or every VY )

v the H'
‘relation

Also, for every f H' transforma-

of £ was defined by the

<H£]f,¢r> = <f.hulP> , for every *y Hu,l .

In a recent paper [3] we define a new genera-
lized Hankel transformation following the ideas
presented by L.S. gube and J.N. Pandey [4]. We in-
troduced a space L B of testing functions such
that the funetion ¥J (xy) is in L8:B for every y>0.
Then, we defined the h'-transform hl'Jf of £, for
every f (.(LS’B)‘, as "

(h]:lf)(y) = ‘-f(x),xJu(xyb , for every y>0

We derived a distributional inversion formula for
this transformation, Moreover, the generalized
Abelian theoremg due to Zemanian [12] were extended
to the space (LD’E)' of generalized functions.

In this paper, we consider the modified opera-
tor of the Hankel transform defined by

(xy) £(x)dx

} R
F(y) = Sn,a{f(x)} ) =y {x T,

(3)

if 2> -é— -(s_ is a variant of the operator in-
troduced by 17°%N. Sneddon [9]). In certain theo-
retical investigations is more convenient to use
S instead of the operator h_ .
na i

We study the image by 5. yof a certain space
of functions defined on (0,""’51 having superiorly
bounded support. Said space is endowed with a loca-

11y convex lopology for every! and . We denoted
these spaces by Dp . We prove that the § ~trans-
form is and isomorphism form nﬂ-q. onto a certain

space G, o of entire functions, for 2n+2020, 2ra>0
and n>-1. The Sy y -transformation is extended to
the dual spaces of Dn,a and Gn,oa. Moreover, a func-
tional differential equation involving the BRessel
type operator

A = x—2r|—1 Dx2(2rr+a)+lnx—2n-2u

N, is solved.

Finally, we state an open problem related to
this paper.

2. THE SPACES OF FUNCTIONS Dma AND G"Tr“- AND THE
Sn'n TRANSFORMATION.

J.L, Criffith [6} proved a theorem analogous to
Paley-Wiener Theorem toncerning the ordinary Hankel
transformation.

Through some changes of variables his theorem takes
on the following form

Theorem 4 : Let

a &= l-a

: ; I
Gly) =bitm. y { x Jznm(xy)f(x)dx. 2rtee-

where Iy is the Besgel function of the first kind
and ordér .

Then :

~ B2 -
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§) £(t) is zero almost all t>A, and
N )

gy e+ h £(t) 1s in L,(0,A)

when, and only when

1) s%(s) is analytic in s for Ocargs<m, |s|>e>0,
1) s l/’G(s) = o(e® %) | as |s|s=, In 520
111) C(w) = c(ue'™ , wo ,

19) w®* 7 ) 1a 1n L,(0,%) , and

W) |82 2% (e) | = o(1)  as 520

This statement is the background of this paper.

2.1. THE SPACES OF FUNCTIONS D, , (a) AND Dy,

Let a denote a positive real number and N and
a any real numbers, Then we define Dn.u(a) as the
space of functions P(x) which are def ined and
smooth on 0<x<®, such that Y(x) = 0 for a<x<®, and

1im Dk(x_zn-zaA'; a‘IJ(x))'O. for every k,m€N.
x+0 ’

k
We define Yk (W)-sup]A \b(x)l for keN
n,o xI Mo

2l 20nHa)Hlp SIN-20 oy T=(0,w)

where ATI -

We assign to Dn u(a) the topology generated by
the countable multindrm {yk “}kcu' Dy, q(a) is a
Hausdorff space that satis?ies the first axiom
of countability. The dual space Dfj n(a) consists
of all continuos lineay functionald on D ,qt@) . The
dual is a linear space to which we assign the weak
topology generated by the seminorms {Eyly . when
Ew(f)=?<f,w>\ and ) varies through Dn,a(a)'

1f 0<a<b, then Dn’a(a)c Dn’c‘(b), and the topo-
logy of Dp ala) is jdentical to the topology indu-
ced in it by Dy, o(b). Hence, we can construct  the
strict countably union space Dy o= UDB_u(a) 3
ay

Q.LYHESPACESOFFMONSGH'“ -(.)Ambq'a .

Let now 1, a, a be real numbers, with a>0 and
2020, We define a topological linear space C_ (a)
as follows. ¢ is a member of Gn-u(a) if and onl?'?t’

a) s-zn-zud)(s) is an even entire function

ki

b) for every keN, |s -a¢(s)|<C ea[Im s for |s|
enough large, Cy being a posit*ve constante depen-—
ding on ¢.

c) {wszml+k¢(s)ds =0, for k= 0,2,4,... and

@) 1] = 00) 48 40 .

Gn 0L(a) is endowed with the topology generated by
¥ k
}

th )
e multinorm (w“.m e where

Wy @ = sup [s%(a) [e “stiss]

s&C

, for every keN

(Note that w

k
keN) . 1

<o
.u(¢) , for every ¢ ¢ cn‘a(a) and
G (a) 1is a locally convex, Haudorff topo-
logical '’ vector space. The dual space of G'.l u(a)
is denoted by G;‘ t1(&) and is equipped with the weak
topology. ;

Moreover, if 0<a<b, then G (a)eG (b) and
the topology of Gp (a) is strofger than" %the one
induced in it by Gp q(b). This allows to define the
countably union space.

2.3. THE MODIFIED OPERATOR Sy, o -

The modified operator Sfl « of Hankel transform
is given by (3). 4

The main result of this paper is the next one.

THEOREM 5 : Let n, a, a be real numbers, with
a>0, 2+ a>0, 2m+2020 and n>=l. Sy is an al-
gebraical and topological isomorohism 5% D (a)on-
to Gn,a(a) " T

PROOF : Let ¥ be in D, 4(a). We denote
y

¥s) = SpaalV(x) (s) = s 4 tl-[1‘1’("')‘]2rt»«cn(st)dt =

2n2a 21+l
=8 L) =™
nlt!( ) b2 a(ts)dt

- 63 -
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-v

where b (z)=z J (z). Since b, 1s an even entire
function, then s~2M2%¢(s) is also an even entire
function.

The following operational ruler holds :

sn'm{aﬁ_uw(c)} a3 = (—sz)ksn‘a(W(x)} () (@)
for every k€N and le-Dn'a(a).

The function P(t) satisfies the conditions
§) and B) given in Theorem 4 and in virtue of (4)
we get

-0 72
|s SR UONHOII

-a+ Yy
| = sn-u{Aﬂ.dwt)} (s)l<cexpla|im s|)

for IsI enough large. Hence, the condition (b) is
satisfied for k=0,1,2.

Also

-+ Y
s Sy, o B8 |-

—ort lfz 2
Is sn.a{An.a"’(")} (s)|<C'exp(alIn s|)

-

for |s| enough large, Hence the condition b) is
fulfilled for k=3,4.

By induction of k we can see that ¢(s) satis-

fies b).

By invoking the inversion formula we can ob=
tain

o

2ni2a 2nt+l
P(t) = ¢ {b2n+a (ts) s d(s)ds

Differentiation under the integral sign leads

to

k, -2n-2a.m
D, (t An'aw(x)) =

£“82ml+k+2mb§l;)m (st) ¢ (s)ds

An application of Lebesgue's dominated convergence
Theorem and by letting t+0 allows to write

0=lim D5t 27 2R y(x))=

{x) o 2ndl42mk
b2n +a(0) 1 E ¢(s)ds

(note that the differentiation under the integral
sign is justified). '

(k)

Since bzmu

(0)#0, for k=0,2,4,..., then

@ 2rl+k
LgeTerE ¢(s)ds = 0, for every monnegative integer
ﬂ. Therefore, ¢ satisfies the condition ¢).

The property d) is equal to v) in Theorem 4.

On the other hand, let ¢ be in Gn c‘(a). We de-

note

i) = t2n+2a {mBZY‘ﬁ-l

BZW(st)w(s)ds

Again, by differentiation under the integral
sign and in virtue of the condition c),

1im Dk(t-Zn-ZaAm

t))=0, for k N.
e n'aw ) or k, m&

Moreover, the contitions a)-d) imply the pro-
perties 1)-v) in Theorem 4, hence ¢(t)=0, for t>a.

Therefore YP(t) € Dn,a(a) »

To complete the proof of this theorem we now
prove the continuity of the mappings

Assume k<N, wenn a(a) and denote

¢(s) = Sn.a(\b(t)} (s).

If 2riodk = 2p for a certain nonnegative inte-
ger p, then, by applying (4) one has

il ~
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ak-%(s) - skﬂu—!n

o
[ :”‘bzmtzs)wmdc "

a y
- tZMinWCst)Az’a w(e)de

Hence, since |exp(-u|1m s|)bv(xs) |§ Cy , for every

s&€C and x €I, where Cv is a suitable positive
constant, we get

l k-a p
sup |8 ¢(s) |exp(-a|Im s[) < M sup|aP (o)
feg ter ¢

(5)

where M is a positive number.

Moreover, If 2rtaetk 1s not even 1t is  enough
to note that :

2THO

|52 e |5 | P |5

where p and j are even nonnegative integers such

that p<k+2rta<j, proving in this case an inequality
similar to (5).

Th H -
erefore Sn & Dn,u(a) > Gn.u(a) is a conti

»
nuous linear mapping.

Assume now &G (a) and let
n, o

y(e) = S;]la{&f?(s)} (t). We can write

o 21l 2.k
B o= 220 17 M) (st (6 (2

for every k €N. By taking Into account that bv(z)
is bounded on (0,%), we get

21+
k
la, o)<k 72—
N 0
1+s

2k
{s ~.CH'ZP*!-sZk_a} | ¢(s) |ds§

2k-at
< K'"{sup|s“ ™ Pi(s) |+sup |52k_ﬂ¢\(s)l)<
tel tel j

|

¥ < 2le—~0e "
< K'{sup|s Pi(s) |exp(-a|in s|)+
seC

Zk—¢
+ sup| s KlA:J(s) exp(-a|Im s|)}

s&C

where p 1is nonnegative integer such that
p=(2041#1)>1, and K and K' are suitable positive
constants.,

=g g

Hence, the mapping S
. pping n,o n,a

’
Gn,a(a) Dn.a(.) is continuous.

This theorem can be extended to the respective
union spaces.

Theorem 6 : This transformation S, ., is an
1s<1>morph1 of Dn'a on toGn'u, its inverse is
= > 8 >
Sn'a Sn,a , provided that n>-1, 24> 0 and

214202 0.

3. A GENERALIZED TRANSFORMATION S'n'n

Let utD,']'a. We define the generalized trans-
formation S,']’au of u as the adjoint of the classi~
cal transform, so that

<s! > = <u,S >
Sn @ u, n,a‘b

for every $eC

n,o’

Also, for every "‘G'.a the generalized trans-

formation S' v of v is defined by
n,a

<8! >z & >

Sha’s¥7 = WS oV
or each &€ D .
for W N,

The following statement can be easily proved

by invoking Theorem 6.

Theorem 7 : The operator Sj ,is an isomorphism
of Dy, o on to G} 41 provided that n>-1, 2m+a>0 and
242020, '

4. OPERATIONAL CALCULUS

We now prove a generalized operational ruler
analogous te the classical one (4).This operational
ruler is useful in solving of certain generalized
differential equations.

: Let u be in D' then

Theorem 8 N
n,u

S! (& u) = —szsf u
na n ,« n,a

where .’.‘;ﬁ 3 denotes the adjoint operator of A
’

n,a

- 85 -
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PROOF: For every ¥ in Dn‘ e one has

<Ax > < >
An U.u'w = u'An,mw

By using the operational ruler (4), we get

2
<SY;'Q(A:\'QU)"‘U> =< “'An_oﬁn,aw = <u,Sn,a(-S YY> =

2
<- ’ > g
s Sn,au,w , for every VY& Gn,a

We consider the differential equation of the
form

(M Ju =g )

where P is a polynomial and 2n+20> 0, 2> 0 and
n>-1. g is in D! . A formal application “of the

Al =t £ ]
Sn,cx transform eads to

g
P(—sz) e

S' u-=
NsQ

and invoking the inversion formula we get

u=8" { s' g} ¢
n,a P(-—sz) n,ag )

We now introduce the following space of func-
tions

lswac}

A").Ol. Pa{wec 7 P(-s2) “n,a n,a

An a.P is equipped with the topology induced in it
» »

by G, a(namely, a sequence {"U\)} converges to U,
as v in Aﬂ =

» Ly

VEN
P if, and only if,

converges to

Note that An " is algebraically contained in
»

D . P
N,
The functional u given by (7) is in Aﬁ —
L] E]
In effect, let
effect, le (w\)}\)cN be a sequence 1in e

which converges to e A as Vv, Then

Ny P?

N

“<u U) D= <g,S
v n,a P(_52) n,a' v

1
%9 3 o BaS S Ul = <u,y>
AV S -3 2 { )
Me peg?y TNha
: 1
since 17} 2 S Y as
P(-s%) Ny L'V P(-s") s 0.
v i S
A Cra v Sy 18
a continuous i f
mapping from Gn,a onto Dn,a and
'
geb o

Moreover, one can show that :

@(A*n’a)u,u» =<u'P(An,a)w> =

1
<g,S { 5 S
n’a P(-Sh) n)u'

f

{P(Amq)w}b =

L]

<g,}>, for every y & An,a,‘P

Hence, u 1s a solution for (6) in A%,a,P

REMARK : If nm=M, m=-y, Sp o coincides with
the Hankel-Schwartz transform (see (1]). In that
case, the results obtained in this paper reduce to
that presented in our previous paper |2].

An open problem.

Thes spaces Dp o are differept to the space
D(I) introduced by L. Schwartz [gf To describe the
behaviour of the operator Sn’a on D(I) is an open
problem.

< 86 =
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