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ABSTRACT

Uniform asymptotic expansions are derived for the
solutions to the differential equation

¥ - (Wfxe + glx,a) } W

The real variable x
and «

for large positive values of u.
ranges over the (possibly unbounded) interval lx

is a bounded real parameter. In lx the function f(x,a)

has a simple zero and a double pole, each depending
continuously on a,which coincide for some value of a.
The expansions are in terms of Bessel functions and are
uniform with respect to x and a. Strict error bounds
are provided for these expansions.

RESUMEN

Se deriva desarrollos asintéticos
soluciones de la ecuacién diferencial

para las

d’w ;

—— ={u” f(x,a) + glx,a) } W
2

dx

para valores positivos grandes de u. La variable real
x recorre sobre el intervalo I (posiblemente
x

no-acotado) y « es un pardmétro real acotado. En I la

funcién f(x,a) tiene un cero simple y un polo doble,
cada uno depende continuamente sobre «, los cuales
coinciden para algunos valores de a. Las expansiones
estdn dadas en términos de la funcién de Bessel y son
uniformes con respecto a X y a. Se provee acotaciones
estrictas para estas expansiones.

1. INTRODUCTION

In this
equation

paper we investigate the differential
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UNIFORM ASYMPTOTIC SOULUTIONS OF SECOND ORDER
LINEAR DIFFERENTIAL EQUATIONS WITH DOUBLE
POLE AND TURNING POINT

a’w

= (uzf&.a) + glx,a) ) W

(1.1)
dx

where u is a large positive parameter and a is a
bounded real parameter which ranger over the interval
[Ax'Az]' The independent variable X ranges over the
finite or infinite

interval lx. The function f(x,a) is

to have only one turning point (zero) in I _at x = x
pole

continous functions of « As a tends to a critical
value « in [Ax’Azl' the turning point coincides with

and one double atx = Xy which are both

the double pole. The function g(x,a) is assumed to be
small in absolute value compared to u f(x.a)| except
near x where it is small compared to f(x,a)/(x~xl)|.

Furthermore, we assume that (x—x,)zg(x,a) is analitic
inl_.
x
We shall construct asymptotic expansions for the

solutions of (1.1) that are uniform with respect to x
in I and a in [Ax'Azl' Strict error bounds will be

provided for these expansions. This problem is one on
the list of open questions which appeared in the
survey [1] by Olver. Although the method we use
applies as well to complex variables, we restrict the
analysis to the real case since this covers most of the
physical applications and sharper error bounds can be
derived.

To our knowledge, the only problem dealing with
coalescing turning points or singularities that has
been treated successfully is the case of two
coalescing _ simple turning points discussed by Olver
[2]. The asymptotic theory for a differential equation
with one turning point and one regular singular point
has been worked out by Thorne [3], but the present
calculation differs from his in two respects. First,
the asymptotic expansions are uniform with respect to
a in [Ax'Azl' including the critical value o whereas
Thorne’s expansions are valid for fixed a = ao.
Secondly, error bounds are provided in our case.
incilude the

Application of the present theory
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associated legendre equation, Whittaker's equation,
and the hypergeometric equation. The necessity of such
result arises in physical problems dealing with the
soluticn to the wave cauation In bprolate sphercidal
coordinates for large wave number [4). Several of
these applications will be discussed In a subsequent
paper.

2. PRELIMINARY TRANSFORMATIONS

We begin by applying the Liouville transformation

~1/2
w

W = {dx/dE) (2.1

to equation (1.1), where the relation between x and §
is tobe specified. Then (1.1} becomes

d*wrde®= (i fix,e) + glxe) + x7 <!

(2.2)

where the dot derotes differentiation with respect to
£. The properties of fix,0) given in section | lead

us to define & by the first order differential
equation
Xf(x,a) = b2 278 (2.3)
£?
with the contidions that
% = X_ corresponds to § = a (2.4}
X = x  corresponds to € = 0 (2.5)
where a and b are functions of « to be determined.
With the relation (2.3), eq. (2.2) can be
reexpressed
dzw P R P 1
2 Uh ——+ — + = ¢ (£} W, (2.6)
de \ Ez H 3
where

vig,a) =

il 2 1/2 d /7
f[ — + X° glx,o) + x° X ’]‘ (2.7)
L I:

13 (iz
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be
the term —é\b(&.u] is small compared to

and p is a constant to determinded. If

o, af p
u“b”® ¥
£ g
then by neglecting it we reduce (2.7) to Bessel’s
equation
d°w a- o
[ ]
dg £ £
’
with the solutions |E|IIZCV(Zub|£]lz), where C,

denotes any cylinder funetions of order v, and

vi=1+4dp+ aab’u’. (2.9)
DETERMINATION OF ¢,a AND b
Now we write the function f{x,x) in thé form
fix.x) = {xl—x)(x—xol_zp{x,a) (2.10)
and assume that plx,a} satisfies the following
conditions:
{i) plx,«) is positive, analytic. and has no Zeros

inl.
2

{ii) i1:)():,:::) and
ax ax
of x and a« in lx and lAl.Azl, respectively.

2 plx,z} are continuous functions

3
(iii) 6_3 p{x.a) is bounded near the point ¥ = Xeo
Ix

Without loss of generality we can assume that x_ ¢ x.

We determine the relation between x and £ by
integrating (2.3):
X (x -p'? 1z
! 172 2 (a-1)
J — P {tldt = b — dy Wexh
t-x = =
X 1] .E
f2.11}
s “_x]]uz s 5 (r-a)'?
J —_ p (t) dt ='b [ - —— dt 1o - 41 1
t T -
X 0 a
1
1
(2.12)
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Wih this choice of the llmite of Integration £ is an
increasing function of x. We denote the image of lx by

1. = {57

£

The unknowns a and b can now be determined. From
(2,11} we have

*(x_ -t) . 5 (a-0)"?
J 1 Y%yt = I)J dr  (2.13)
(= T
x| v}
In view of the condition (2.5) the Integrands In

(2.13) can be expanded about the points X = X, and § =
0, respectevely; we find

1/2 o
(a-t) _ ‘/j

L2 A 2 3
= [ 1 - — - - T + 0O(t ]].
z 2a 8a”

On the order hand, because of conditions (i) and (iii)
on pix,a) we can apply Taylor's theorem to expand

pl“(t) in powers of (t-x ). After integrating these

expressions term by term we have

1/2

P
(x -x ) 2
170

172
p lxo)[ 111(x-xn) + { R RS R
0 1 o

(x)
(x

} (x-x )
]

p"(x,) prix ) plix)
+ - - -

2 2
4p(xD) 8p(xu) 4p(x°)(xl—x°) 8(x1-x°)

1

2
(x-xol (2.14)

+0 {(x-xojs} ] =t/ a [

£ £
lnE—-—-——_5+o{g3)]
2a Ba

Ncte that when x 3 x_ both  sides of (2.14) have
logarithmic  singularities at the  origin these
singularities cancel if

ba'? = (xl - :ttn)l/z pl/z(xo] {2.15)

Tris is our first equation relating a and b A second
equation is found by evaluating {2.12) at x = x, and

€ = a.

The next step in this analysis is to prove that
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under the glven assumptions ¢lx,«) s continvous  in

the interval

lE = (8,7} for all values of a In [A‘.Azl.
3. CONTINUITYOF y¢l&=}

The function ¢{£,a) can be written as

P > L
+ X glx,a)— {x.&} ]
¢ 2

where the Schwarzian derivative is given by

WE.0) = »:[ - @.1)

{x.e} = Wi - (3/2) (/%)% (3.2)

By making use of the relations (2.3} and (3.2) we
chbtain

bz(a-E)(x-xu)z

SE 1 1
#l(tf.m)=——+———2+ - — -
£ 16{a-€) 4{a-£€) 3 E(xl-x]p(x)
5p'2(x) p"{x) 1 p'(x} I 2
{g(x.a)-(— e s = (=] # 5
16p~(x) 4p(x) 8 plx) X <X X =¥
1 S L
- - — +

} (3.3)

4(xl— x)(x-xol l6(xl-x)z 4(x-x°)

The constant p must be defined as

p=1lim (J(-xa)2 glx,xl.
XX

(3.4)

which can be seen from (3.3) and the requirementhhat
V£, &) be continous at £ = 0, Therefore we shall
prove the continuity of the Schwarzian derivative

(3.2). For this purpose,, we consider separtely the
three £ - & reglons:

E=0,al a=»a (n

Esa,al a=*a (1)
xa, al #*

£zxa,al « a am

The remalning portion of the £-a domainwill not be
discussed, since continuity there can be proven by
following the steps for the analogous case of two
turning peints [2].
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REGION ()

Consider the case where £ approaches O from the
right. Determining the relation between x and € near
the points x = x and £ = 0O by solving {2.14)
iterativety gives.

x(E.@) - x = £ + c!e’ + czg“ + o(eY), (3.5)
where
p'(xo) i ‘
Cl = - + S (3.6)
pixo) Zix]—xo) 2a
1 3 5 C| 1
CZ=— z+—Cl+*—_ {37
16a 2 2a 2
p (xo)

" ' 2
{ p (xu) p (xo) 1 }
= E 2
B(xl-xo)

The next step is to show that the O-term in {3.5)
holds uniformly for

ap(x)  8p°(x) 4p(x )(x -x)

(3.8)

or equivalently ¢ < x-x_ = & < x - x_,where 5. and 3
[ x 1 o 3 X

are small non-zero numbers. We first determine the
behavior of € and €, near the critical value, i.e. as

o® 1!0 or Xl
found from (2.13)
setting the upper

* %, The behavior of a as x + X, can be
by expanding p"z(xl about X, and
limits on the integrals to x = x,

and £ = a. The result |s

A E
a=(x-x)[l+— — (x -x )+
L2 3 p(xo) o
1 P (x,) i p'z(xnj
=i e - tx-x:2+o{(x-x)’}]
15 1 plx) 3p2()(0) } o 10

Then by substituting (3.9} Into (3.6) and (3.7 we
find that all the terms with negative powers of a
cancel leaving

p'(xn) 1

cC = = = -

1
3 p(xo) 30
"(x)  4p%(x )
Pty P o
- + (x -x )+ O(x-x)3 (3.10
(x ) 3px ) e W
Plxg 0
and
12 "
i1 P (xol p (xoi .
e +0 {(xl-xa)). (3.11)
45 pix ) lOpl‘xa)
These expansions show that the coefficients are

continous as a + L Consider again {2.13), which we

rewrite in the form

172

KX, (xl-xo-t) s £ (a-t)"2
I — [t+x0) dt = b I dr
0 t o T
l (3.12)
Denote the error term in (3.5) by n and let
¥k v Ez + czﬁa (3.13)
Therefore we can express (3.5} in the form
x(£,a) - X, = E+m. (3.14)
and (3.12) as
l1 + !2 = .Il ' (3.15)
where
> 1/2
€47 (xl-xo-t) .
|l = J- — pl/ (ttxoldt (3.16)
A t
€
€ (x-x -t
| ¥ A
- —————— p " (tex )dt
h .[ n t 2 (3.17)
and

48 -
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=D I e (3.18)
0

In 1he integral lz we make the substitution t = \H-clvz

+ ¢ z—va, 50 that t=0, tné correspond to v=0, w=g,
respectively. 1If 8€ is sufficiently small, then dt/de
= 102clv + :k:zvz {s positve, which means that the

correspondence between t and v is one-to-one.
Expinding the integrand about v=0 we find

E 1
172 172
1, = p"% (x)x,x) j - [n'
ov

p'(xo)

[
1

1
P N } :
Zp{xo) 2€x1-x°l

» " ' 2
p {xD) p (xo) p (xo) )

+ - - C

2

¥ {Zcz T 2 ]
-x )
plxol 4plxo) 8p (xu) (x1 x )

1 i) 1

- - } v s 0(\'3)] dv .
4(xl-x°] p(xol B[x‘—xol

(3.19)

By using formulas (3.6) and (3.7) for € and c,. we
find that (3.14) reduces to

/2 vz
L=p (xn)(xl-xu)

1 1 1
J = { - ¥ - — v+ otv?) }odv.  (3.20)

Similarly, expanding the integrand of J1 about T = 0
yields

- 49

1/2£1 ; A 2 3
-’l=ba J‘;{l-—l"-—'r 40(1‘)}(11'
2
] 2a 8a

(3.21)

The remainder terms in (3.20} and (3.21) hold
unifermly in the intervals (3.8). The combination of
(3.15), {3.20) and (3.21) leads to the estimate

£
-1, = p”z[on(xl-xo)llzLO(EZP dE =

172 L3
P X )x —x ) 0(E") (3.22)

On the other hand l1 can be estimated by applying the

mean value theorem to the integral (3.16), which
gives,

172 E+q
. /2
Il - (xl X, t) p

(3.23)

(t+x ) In
0

€

where O < 1= 61. The logarithmic term can be

simplified by using the inequality

In{x/y) 2 2 (%X-y)/(x+y) (0 <y = x) (3.24)

£+

Therefore, In = Kin/g), and

g
WV
[1} 2 Rix,-x -t} p " (L +x)nE, (3.25)
But, from (3.22) we have
_ e W72 172 3
|I]| = (x] xO) p (xn)D(ﬁ ) & (3.26)

Thus, n = 0(54) unifermly in the intervals (3.8),
which means that the remainder terms in the expansion

x€a) - x =€ +ce’scg’eoih {3.27
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hols uniformy for 0 < € < 6€ <a, o %o To find the

expansions of the derivaties as £ » 0, we use the
relation

bz(xl-x)(a-f)
2

e T T (2.28)
£ lx-xnl plix)

substitute (3,27) for x and solve for %.This gives,

k=1+2§+ 3c2g2 + 0(Y ,
X =2c +3ck + o(e%),
X = 3c, + O(E).

All the O-terms above hold uniformly in the Intervals
(3.8); hence x, %, X, and X are continuoua in these
intervals, which implies the continuity of the
Schwarzlan derivative under these circumstances. A
similar analysis works for the case £0 , a * a:o.

This completes the proof that ¢(£,«) Is continuous for
E =0 and o » o .

REGION (11}

In the case that § approaches a from the left, we
expand the Integrands In (2.11) around the points € =
a and X = xl. integrate term by term and solve by

iteration to get

x,~X(E.0) = d (a—6) + dl(a—E)Z + dzta-a)“ + 0l(a-€)* }

(3.29)
where
0(a—£saj€<a,rxtao
- (3.30)
(or equivalently 0 < X X = 6: < xl--xon
b X,°X a2
do = g (3.31a)
P (xl)
2 2 p lxl) I )
- S Tl . s (3.31b)
Sa 5 Zpixi) X =X

- 50

p'z(xl] p'(xll

+

p~i(x )
2 1 1
ek { I ST } d;
2 2
7 4p(xl) 8p (xl) Zp(xl)(xl-xo) (xl-xo)

(3.31c)

Substituting the expansion (3.9) for a as a 4 o into

(3.31) we find that all the terms containing negative
powers of [x|—xo) cancel, which means that the

coefficients do, d', dz are coptinous as « - o To

prove the wniformity of the term in (3.29) in the
intervals (3.30) we denote the error terms in (3.29)
by mand

let

€ =d(a€ + d](a{)z " :12(3—513 .

(3.32)
Hence
xl—x=€+ﬁ. (3.33)
Now, equation (2.11) ¢an be written as
x =X 172 . . a-& 172
I P ix-t) dt = b J' 4t (339
[ X -x -t o o-T
1 7o
or in the form
I %1 =] (3.35)
3 4 2
where
é+ﬁ t1/2
1. = j - — p“z{xi-t) dt (38

£ e
3 1xot
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£ 1oz

1= J- — p? (x -t) dt (3.37)
0 X -x -t
1 o
ani
a-£ 172
L= bf —— dr. (3.38)
0 a-t

In I we introduce the new variable v by t = aoG *

dlaz + dz;':’. The correspondence between t and v is

one -_to - one since dt/dv > 0 for sufficiently
small &. Expanding the integrand about.v = 0 gives

15550, 0
d " d° d
s 9 d prix.) 7% 1%
{ = ; + d v o+ e + - +
) = o i
d() 1 0 2])(:([] 8 do 2d
7 d| do P {xl) do T
- — + A * ( + —-d
2 x -x (x -x ) 2pix ) x -x 2
1 [+] 1 4] 1

" 2
p(xl) p (xl)

) - - —— ) d LV e 0@ av (3.39)
4p(x|] Sp(xl)

By substituting the values for do, dl. dz from {(3.31)
int> (3.39) this reduces to

a-€
. =1/2 oo i
I, = (bsa) jo v { 1+ Ve otv3)} dv

(3.40)

Expanding the Integrand in .Iz about T = O ylelds

a-§
J_ = (bra) I 172 { 1+ é T + li %+ ol } dr (3.41)
2

0 a

By comblning (3.40) and (3.41} we have the estimate

b

a-g
L=1 = lb/al_[ oix™® dr = - o{[a-s)m}
2 4 ° a

(3.42)

The O-terms in (3.40), [(3.41), and(2.42) hold
uniformly in the intervals (3.30). By applying the
mean value theorem to the integral I we get

] I t% at = (3.43)
e S g
ZpL/Z(x,—{)
B2 (1« w2 1)
3{x1—x0—?l

where()(Eigx.Sinceé+ﬂ=xl-x>0

then W& & (-l

But in this range the inequality

’ ars
/{(1+ ) —l}

where C is an assignable possitive constant. Thus,

= C is valid,

Ml Fa
o | =5

172 -
2 P (xl-t) Z:1/27-'
8 (3.44)

3 x-x -t (o
1t

But, from (3.2) we have
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IL,| = (bsa)o { (a-6)** }

Since £ = O(a-£) we obtajn the estimate

n=0 { (a-s)‘}

uniformly in the intervals {3.30),

REGION ({i1)
In the case that £ approaches a from the right we

start with eq. (2.12) and through the same analysis as
in the previous case we obtain the expansion

x(€,0)-x, = d (6-a) - d (€-a) + d (€-a)° + o{(g-a)‘}

(3.45)

where du' t:l1 and t:i2 are defined in (3.31).The O-terms
holds uniformly in the intervals

0s€ -a s-:SE for all

In particular, for the critical value

for 0 % % - x = ax). (3.46)

-
o= an,i.e x =X

1 p'(xo)
x(€,a) - x, = £+ -
3 p(xo)

€2 + OlED.  (3.47)

In cases (I} and (NI} the dervatives of x(£,a)
near £ = a are obtained by substituting (3.29) or
(2.45) into (3.28). The results are

X = do— 2d1lE-a) + 3d2(€-a)2 + O{IE—a)a}

X = -Zdl + edz(&a) + 0{(6-3)2}

X = 6d, + 0{(-‘;’—3)}

which are unifofmly valid for all e« Therefore, the
Schwarzian derivative is continous at £ = a. This
completes the proof of the continuity of WE o)
for § ¢ lE and @ £ [At'Azl'

4. ASYMPTOTIC EXPANSIONS

The equation

a’w a-€  p Y&,
— = { u?'t:i2 e + — + S— } w (4.1)
g £ £

has a regular singular point in

I.=(87)at £ =0

¢ ¥ £
Since our concern is in constructing only real
solutions, we consider the intervals (0,7) and (3,0)
separately. For (0,7} we take as two linearly

independent salutions for the comparison eguation
(2.8), the Bessel functions

€l/2 172 1/2

Jvtzubg”z) and £'7% ¥ (2ubg"®),

where
vz=l+4p+4ab2uz.

For (5,0) we take the modified Bessel functions
(6% 1 { (2ub(-£)'"2 ]

and

(-6)"? K, { 2ub (-€)"? }

As a solution to equation (4.1) for positive £ we try
the series

® A_(El
172 172
w=¢£"c (2w ] ——
L -Zo (Zub)z'
(4.2)
& ™ B.(E)
PR o (Zubﬁl/z) =
2up M s=0 (2ub)

where Cv denotes 'Iv or Yv‘ By differentiatlng {4.2)

twice and making use of Bessel functlon properties
[S], then substituting the result in (4.1) and
equating like powers of u, we find that AS(EJ and

BS(E) satisfy the equations
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An(ﬁ) = constant (4.3)

EA";E) + (wi)A’S(E) - Y(€,a) AS‘E) =

eﬂ's(t;‘l - (l/z)liS(E) =0 (4.4)

A'sﬂlﬁ) + EE"S(E;) + (l-v)B'Sl‘g') -~ wfg.a}Bs(E) =0

[ SR — i

(4.5}

Without loss of generality, the constant in (4.3) can
be taken to be unity. Integration of (4.4) and {4.5)
yield:

B () =
-Al (€) + €772 [wu.amsm-(u + vzwm] % de
(4.6)

and

A, [6) = vB_(E) - £B" (&) + J' ¥(€,a) B(E)AE. “n

determine As(€) and B le)

successively, apart from an arbitrary constant of
integration in  (4.7). The lower Ilimit in (4.6) Is
chosen to be £ = 0 so that B_(§) Is continuous at this

These relations

point. The continuity and differentiability of the
coef licients AS(E) and BE(E) in the interval is and

Immediate consequence of Olver's lemma [6, p.410). For
£ ¢ (8,0) we have the s?lme_series solution,where C
now ienotes either Iv or e KV and £ s replaced by
-. These coefficients satisfy relations (4.4) and
(4.5) with

B_(§) =
s

(1}

-AE) + (-7 I [ v (r.ams(r)-(w;_/zms{r)](-ﬁ'”’ dt,|

£
(4.8)

corresponding to (4.6).

Asymptotic expansions for the “solutions of (4.1)
are obtained by truncating the serles (4.2), so we
have

p AIIE)
w () = |€]"* c (2ub|€]"D § ———
P ¥ s=0 (2ub)?*
-1 B (§)
€] i
- — G 2un]|£]™) 5. * € (60
oy V" a=0 (2ub)” P

The function £ {€,u) represents the error associated

with the respective asymptotic expanslions. From
analyticai and computational standpoints it s
necessary to have  realistic bounds for  the
functionse(§,u). Most frequently, the procedure used

to derive them is to find a differential equation they
satisfy., Then by using the method of variation of
parameters this equatlon s converted inte an Iintegral
equation to which one can apply COlver's theorem to
bound the solutions [2,6]. The continulty of w(£,«) is
a necessdry requirement |n the error analysis and this
property has been verified In section 3. Because of
the similarity of the comparisen equation (2.8) and
that in the theory for a simpte pole [6], in the sense
that both !ead to Bessel expansions, the error
analysfs (s similar in these two cases. We therefore
omit the details and summarize the results in the
following section.

5. MAIN THEOREMS
THEOREM 1.

For € £ {0,7) the differential equation

d°w 5 50z p WE,@)
hz{ub———f—2+——-—--}w (5.1
€ 3 £

where ab, p and ¥E.x) are defined in section 2, has
solutions glven by

1/2 1/2 4 Alti’
W (E.u) = €Y% 5 (206" L .-
gl v .}=:o (2ub)®
3 -l B (£)
e e (R ——+e_ (G
2ub VM a20 (206)™ - P

(5.2)
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P A'(E)

/2 1/2
W (Euw=g?y 2w ) —— . — v (2uee"?
Bk v 20 (2ub)* 2ubp ¢
pot B, (€)
+ € _(Eu) (5.3)
_I_:o (2ub)?" P2

where
pzzlo4p+4ab1uz
and
Al(u)
Elo s e LoEhB: prd
16,61 (2ub) %! &)
172 172 1
(2ubg" "M, (2ub€"%) v, (x "Bp(rn.
A_(v) 1
exp { v ("B [t))} (5.4)
2w %€ g
8 Aa(v)
—g (&) sk
ae ™! 2(zub)® V!
/2, .~2 172 172
(2ubg™)E® (20b€"%) M (2ubg'?) .
i\ztvl
17 1/
Vo.Ett 2Bp(t))exp { zm; Vo.&“ zBott))} +
v+l
—zg Itp.l (C.U)I- I [ 9,2{5"”' = (5.5)
k‘(v )
v 2z 2, wz 1
TS €Y 7 £ (2ubg "M (2ug W, (v 71!p['r)).
A_(v)
{ ‘ Y8 (1 (5.6)
exp v (x (r }. 3.
b &7 g

8 A‘(v)
— e [(Eu)] =
P2

ag

(Zup)™™ ¥

(2ub"?) M (24 2w X
. l2UbE E.r('ﬂﬂp(t”'

kz[ﬂ v+l

1/2
exp VEJ(I BD(T))} + —ZE |cp'zlE.u)|.

2ub

The coefficients A- and B. are given in (4.6) and
(4.7). The functions E, and M are the auxifiary

functions for Bessel functions and are discussed in
[6]:

Ev(x) =
172
{ - Yp(x)/.lv(x)} (0 < x < Xv), Ev(x) =1 (x =z Xu]

(5.8)

where deenotes the smallest positive root of the

equation
Jv(x) + Yv(x) = 0 (5.9)
and
12
M (x) = 2|y 604, x) 0<xsX, (510
2 2 1/2
{Jplx) + YV(x)) x =X,

The functional V b(f(x]] is the total variation of f,
&,

i.e.

b
Vol = J | (x)] dx.

The factors Az. ;\3. A‘ are defined by (6]
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1/2

A_(v) = Sup ¢ M2 1/2
- P {m x M (x) (5.11a) ) A ) K, (2u]§] M (2ub €]
I_E- CP S(E’U)] & ( 2p 172
n ' 2ub) K (2ub
A (v) = Sup (r x E, (%) M,() 1 (x)) e i) , [2ub]g[™"%)
A,w) =Sup (m x E_'x) M_(x)|Y ()|} 172 Aytvl
4 v v ' v I (5.11¢) vE,o(!TI B’{T)}exp{ e Vg,o‘|"l”w Bo(tl)}
for x ¢ (D,m), v+l
+ —écp’aff,u) ,
THEDREM 2. (5.15)
For £ ¢ (8,00 the differential equation (5.1) has
solu:ions al {v)
2 172
W ,(Eu) and W (€,u) given by |cp..tE.ub| s e &l K, (2ub]g] %)
2 12 : A
W& = |€]F 1 2ublg)"h T (5.12) A ()
s=0 (2ub) v&,f (| Bp(t)). exp v (l"lvz B (¢))
2ub 6.6 o
£l V2 0 B®
. 1, (2ub]€]Y%) —— + e (Eu).
2ub <o (2ub)* PP (5.16)
P
A (€)
W = [€]F K (2u]€]') . 8 A (v)
s5o  (2ub)?®* I e, el | e
& (2ub)?®
(5.13)
172
= 5 K, (2ubg] )vmqq"zap(,n
-—k, @ulg" [T S0 e (e,
2ub sZ0  (2ub)*" P
l.(V)
1
. exp v 172 v
- [ T (= Bo('l.'”} + —chm (&,u)
Al(v)
|e JEu)| § — 2
P (ZUU]ZP” I l (5.17)
1 (2ub{€|"® v, (][ B (v
y2welel O (5.14)
where
";(")
. exp v, (|t|"* B.(x)
{ 2ub g0 I o Al(v) = Sup { 2x lV(x)Kv(x)} SH- A () (5.18)
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8, UNIFORMITY OF THE EXPANSIONS

The uniformity of our asymptotic expansions for
WH(E,u) will be proven by showing that c”(E.u) Is

uniformly bounded for £e(8,7) as u becomes infinite.
It has been shown [6] that the factors Al(v} are

bounded, All the total varlations appearing in the
bounds of c (E.u) are bounded due to the continuity

and different:ablhty of the functions B (x) and B {£)

for £ ¢ (3,7). In the case 3§ = ~@ or ¥ = w & NECESSATY
contldion for the  yalidity of the th oL em is the
convergence of |£| /zBo(ﬁ) and lE]* B'(E) at

infinity. Consequently, for Iarge u we have uniformly
from (5.4) that

- £/ p=1 172 172
]cP‘I(E,ull = £ Ev (2ubg )Muf?,ubE )0(——-uzp”)

(6.1)

Writing 2ub£"2 = y and making use of the definitions
of the functions E and M, we write

1 _ ~ 6.
E, (YM,(y) = U (3N (y) + S (M I, (). (6.2)
where
1/2 _
Uy =2"% .8 (v = (0 sysX)
and
Uv(y) -
n
S ¥ YWll’y)Mu[y) S [y] Y iy)M {y) y z .‘(v}.
(6.3)
For y large, we know that (S}
1,5 = (2/7y)""* {cosly-mvrz-n/4) + 0(1/y))
Y (9 = @/ny)Psin(y-nv/2-x/4) + Ol1/y.
(6.4)
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Hence, for y £ (O}, [thyll and |Sv(y)i are bounded.
Therefore, the right hand side of (4.2) with Cv - "v
provides a uniform asymptotic expansions of W"I(E.u)
to 2p+l terms. Slmilarly, from (5.6) we have

1

c  (£,u) , 1/2 /2 Vo T
!hp.z Eu I € EV(Zusz )MV(Zut-‘;' i u2|m )
Writing
Ev[y}Mv(y) = Uv(y)Yv(y) + yS(y)Yvn(y) . (6.5)
where
U(y) =2"%, 5 (y) = (©

s e sysX) (6.6)
= ny
Uv(yl - J (y}M (y), s (y)

x
=-- Jv(y)up(y) {y = xv)

We note that |Gv(y)| and |'§v(y]| are bounded on (0,a);
therefore the right hand side of {4.2) with Cv = Yv
provides a uniform asymptotic expansion of Wp 1(£.u)

Consider now the error functions
‘(E,u) for € e(5,0) and u approching

infinity. The factor Alfv) is finite [6]. Hence,

to 2p+l terms.
Ep_nlﬁ.u) and c’.

172 172

1
e j&uw = |€]"" 1 (2ub]€] )O(UZTI) (6.8)

|EI1/2 1/2

K, (2ub] €] ""*)0( ) (6.9)

e (Eu) =
.4 2p+1
P u?*

Therefore the right hand side of
and Cv = Kv provides a

w p,:l(E'u) and

uniformly as u > e .
(4.2) with Cv = ]v
asymptotlc expansions for

w '(Q,u), respectively, to 2p+! terms.
P

uniferm
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