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ABSTRACT

The principles of conservation of matter and energy
are readily quantified in the mass and energy balances
of the First Low of Thermodynamics. On the other hand
formulation of a comparable balance equation for the
Second Law tends to be more abstruse in traditional
expositions.

The objective herein is to demonstrate the basic
Second Law equations--the Gibbs (or combined law)
equation and the  generalized entropy balance--can be
obtained as a simultaneous result of combining the First
Law mass and energy balances with corresponding energy
transport of degradation functions. In this manner,
consistency or reciprocity between the Gibbs equation
and the entropy balance is assured. Another dividend
from this approach is that it facilitates a more
pragmatic interpretation of these relations.

RESUMEN

Los principios de conservacién de materia y energfa

son rdpidamente cuantificados en los balances de masa y

" energia en la lera. Ley de la Termodindmica. Por otra

parte, la formulacién de wuna ecuacién de balance
comparable para la 2da. Ley tiende a ser diffcil de
comprender en exposiciones tradicionales.

El objetivo de este trabajo es demostrar que las
ecuaciones basicas de la 2da. Ley (la ecuacién de Gibbs
(o ley combinada) y el balance de entropfa generalizado)
pueden ser obtenidas como un resultado simultdneo de
combinar la lera. Ley de balances de masa y energfa con
el correspondiene transporte de energfa o funciones de
degradacién. De esta manera, se asegura la consistencia
o reciprocidad entre la ecuacién de Gibbs y el balance
de entropia. Otra ventaja de este enfoque es que
facilita una interpretacién m&s pragmdatica de estas
relaciones.

INTRODUCTION

The methodology presented herein was originally
developed for use in the classroom to add a measure of
concreteness to the concept of entropy which, for many
students, seems hopelessly embedded in abstractionism.

DEVELOPMENT OF CONSISTENT FORMS FOR
THE GIBBS EQUATION AND THE ENTROPY BALANCE

To this end gross simplifications, including absence ot
any mathematical sophistication--yet without
compromising the generality of the results--will
constitute the procedure. What it lacks in elegance, it
compensates in realization, as perceived by more than
four decades of experience with students. Forthwith,
then, a one-dimensional system composed of a single,
non-reacting substance which is free from any effects
due to external conservative fields, bulk kinetic
energy, viscous dissipation forces, memory and nuclear
transformations will be the focus of attention.
Accordingly the basic equations for the .First Law are
the

Mass balance: dM = GMl - GMO (1)
and the
Energy balance: dU = 8Q + HM - M M - W (2

The Second Law equations, as established by practice,
are the

Gibbs equations: dU = Tds - PdV + GdM (3)

and the

SLw
T

(4)

Entropy balance: dS = 6[ ] + §‘5Ml - §°6M° +

=R
T
bq

where the symbols have the following identities: M
(mass), U (internal energy), Q (heat), H (enthalpy), W
(work), T (temperature), S (entropy), P (pressure), V
(volume), G (chemical potential although Gibbs used the

symbol p) and LW (lost work).[1]

The subscripts "i" and "o" represent "in" and "out”
and the subscript "bq" on temperature indicates the
temperature at the boundary where the heat transfer
takes place. The bars under the symbols (H and S) denote
the property per unit mass. M in equation (1), U in
equation (2), all of the terms in equation (3) and S in
equation (4) refer to properties within the system as
contrasted to properties at the boundary which are
always subscrinted with lower case letters.
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Equations (1) and (2) are simply expressions of the
accountability  principle: "Accumulation equals Input
minus Output”. Note in this instance that the algebraic
sign convention for mass in and mass out is always
positive, whereas Q is positive for heat absorbed by the
system from the surroundings and W is positive for work
done by the system on the surroundings.

Equation (3), as originally proposed by Gibbs,
constituted an extension of his equation for a closed
system undergoing a reversible change of state to an
open system by simply adding the GdM term. [2]. In so
doing Gibbs stated explicity that equation (3) served as
the defining equation for the potential, G.

Gibbs did not utilize, however, an entropy balance
comparable to equation (4) which is simply:
"Accumulation equals Input minus Output plus
Production.” In fact, this general form [3] --or its
equivalent-- really did not become “popular” until a
half century after Gibbs. Note that equation (4) is
"analogous in structure” to the energy balance, equation
(2), at least to the extent that it contains explicit
terms for heat and mass transfers. However, the entropy
balance corresponding to equation (4) cannot be
postulated simply by analogy to the First Law energy
balance, equation (2), with an a priori assurance that
it will be consistent with equation (3) as originally
proposed by Gibbs. For this reason the customary
approach has been to accept equation (3) as the
"defining equation for entropy" (not strictly in accord
with the original development by Gibbs, as noted in the
previous paragraph, since he used this equation to
define  chemical potential after having accepted
Clausius’ definition of entropy). Then, by substituting
this equation for dU in the energy balance, equation
(2),. and carrying out essential algebraic manipulations
(similar to those employed later in this presentation) a
relationship corresponding to the entropy balance in
equation (4) can be obtained. In this presentation,
however, the objective is to obtain the Gibbs equation
and the entropy balance simultaneously such that a
variety of reciprocal forms can be examined. In so
doing the content of the entropy production concept is
exposed.

SIMULATION OF IRREVERSIBLE PROCESSES

The energy balance of equation (2) requires that
the boundary of a system be conceptualized as three
discrete sections: (1) a rigid, diathermal, impermeable
wall which only allows heat transfer; (2) an adiabatic,
impermeable wall or linkage which only allows work
transfer; and (3) an adiabatic and anergistic wall that
is permeable only to mass but not to heat or work
transfers. (Notwithstanding, ambiguities continue to
arise at boundaries where mechanical work is dissipated
as frictional heat or viscous dissipation and/or where
simultaneous heat and mass are exchanged.)

For finite rates of heat, work, and mass transfers,
gradients in the corresponding potentials (driving
forces) or properties must exist, at least at the

boundaries; such gradients are assumed to be continous.
In  order to apply the concepts of eclassical
thermodynamics (often equated to thermostatics)
specifically the Gibbs relation, equation (3), the
initially, non-uniform system must be subdivided into
small elements or subsystems such that the assignament
of "average" uniform properties [4] to the material
inside the boundaries of the system is representative.
The properties at the boundary, however, retain their
original values. The net result is an element or
subsystem having uniform properties throughout with
discontinuities (or "jumps") in the corresponding
properties at the boundaries. Accordingly, the
conventional methods of thermostatics for the analysis
of "discontinuous systems" apply by treating the
boundary as one part with uniform properties and the
system as the other part with a different set of uniform
properties. Note that the requirement of uniformity does
not impose constancy with time; i.e. properties can be
time vairant, but at every instant of time they must be
uniform throughout the element; this condition must be
fulfilled in order to apply the Gibbs relation, equation
(3), which expresses dU in terms of properties of the
system. On the other hand the energy balance, equation
(2), expresses dU in terms of transitory quantities
which are defined, and exist, only at the boundary
during the actual transfer process.

Gibbs first "derived" the closed system form of
equation (3)

dU = (TdS - PdV) (s)
rev

from the energy balance for a simple, closed system (GM‘
=0 = sMo) by considering only a reversible process in

which case all that was required was to substitute (TdS)
and (PdV) for 38Q and &W, respectively, in the closed
system energy balance. In the present development, the
open system form of the Gibbs relation, equation (3),
and the entropy balance, equation (4), will be obtained
simultaneously from the energy balance, equation (2),
without imposing the restriction of a reversible
process. To do so, will require the definition of an
energy transport or degradation function which remains
valid even for irreversible (real) processes.

Whenever a gradient of discontinuity (as explained
above) in the potential or thermodynamic force
exists--such as pressure, temperature, chemical
potential or electromotive force --a transfer or
displacement of a conjugate quantity-- such as volume,
"entrops" (heat energy per unit of absolute
temperature), mass, electric charge, etc.--can occur,
subject of course to the conditions of constraint. The
net energetic effect associated with each transfer can
be expressed in general by

(82) = (w, -~ ) (80) (6)

where (8Q) designates the quantity transported or
displaced at the boundary; wb and ¢ designate the
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thermodynamic potentials at the boundary and within the
uniform system (or subsystem) respectively and (82)
cesignates the pet or residual energy associated with
the transfer. For the time being it is better to regard
equation (6) as a mathematical definition; later its
physical significance will become evident. Equation (6)
can be specialized for heat, mass and work transfers as
follows:

By = (T, - s[T—i’q] ™
6A"‘ = (H‘ - H) (GMI) (8)
6Xuo = (ﬂe -H (5"0) (9)
a, = (P, -P) (3V) (10)

Note in equation (10) that only the pressure/volume
transport will be considered here, for simplicity. [5]
Introducing definitions (7) through (10) into the energy
balance, equation (2), in accordance with the principle
of equiponderation,

. - (T - i -
du [ao (TNT)G[T ]““Q]

bq
[GW—(P -P)6V+6A]w
bw w

[ﬂ|6Ml - (H -HaM + axul ] =

[ﬂomn - (H M- (H - DM+ 8\ ] ()

Note that the second and third terms within
each bracket are equivalents because of equations (7)
through (10). Also, for this simple system,

W =P &V =P dv (12)
bw bw

Ey combining equations (1), (I1) and (12), simplifying
and regrouping terms,

M
dU=T[8[TQ ]+ — ° |-pdv + HdM

(13)

Since U is a state function it is permissible to replace
the bracketed term by the derivative of a state
function; therefore, let

SA —SA_+8A -3A
Q Q w H‘ “o
do = 3 [‘f— + S (14)

equation (13) becomes
dU = Tdc - PdV + HdM (15)

Although equations (14) and (15) are "uncommon”, they to
consitute a compatible pair which could be used,
presumably, in place of the conventional entropy
balance, equation (4), and the conventional Gibbs
relation, equation (3). It is also obvious in equation
(14) that if all the potentials are balanced, i.e. all
3)’s are zero, the ¢ function Iis identical to the
entropy function for a closed system. (In fact, it can
be shown that do + SdM = dS.)

CONVENTIONAL ENTROPY BALANCE

Since entropy is a -function of state it can be
considered to be a property of matter in the same sense
as internal energy. Thus, it follows that in an exchange
of mass between the system and surroundings, a
corresponding quantity of entropy -is transferred.
Inspection of equation (15) indicates that since (HdM)
is the only term explicit in (dM), it must account for
all energetic effects associated with transfer of mass.
Intuitively then, enthalpy (H) must contain implicitly
and identifiable part related to entropy.- Furthermore by
analogy with the energy balance, equation (2), and in
anticipation fo the desired form of the entropy balance
as given by equation (4), it is evident that explicit
terms for entropy flux associated with mass transfers
will have to be introduced in equation (13). Accordingly
§|¢5Ml and §°6M° are added and subracted within the

brackets of the right side of equation (13). Now, in
keeping with the fact that all of the A terms are
expressed as differences in properties between the
boundary and system, as shown in equation (11), SdM is
subtracted and its equivalent §(8Ml = 6Mo) is added

within the brackets. Collecting and grouping terms leads
to
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= Q _ 1 _ _
du =T [ ] [  ap ] +S3M - SM + 3| 8 n'«sxul
q

T(§|-§15M| - 67\“ * T(§°-§)6M°} ]— PdV + (H-TS)dM

o

(16)

Defining and recalling equations (7) through (10)

Q - 1 Q
dS = G[TN‘J §‘6lll §°6M°+ T {(TN-T)G[?] -(Pb'—P)6V¢
q

[‘Hrﬂ"“i.‘§’]5“. . [(uo-u)- T(§°—§)] ‘“.} an

Combining equations (16) and (17)

dU = Tds - PdV + GdM 3)

where G = H - TS (18)

Equation (18) can be used to eliminate H in equation
(17) to obtain another version of the entropy balance,

Q 1 Q
ds = G[T—] + §IGMI - §°5M° + T {(TN-T)G[T-—]
bq bq
(P, -P)V + [(gl—c) + SI(TI-T)]SMl -
- [ - + §°(T°—T)]6M°} (19)

Each of the terms within the braces of equation (17) can
now be identified with the Second Law Generalization

(AS]umv = [AS]sys + [AS]N._ z0 (20)

where  subscipts  "univ”, "sys" and 'sur refer
respectively to the universe, system and surroundings
(same as boundary in the above). Applying equation (20)
individually to the processes of heat, work and mass

oo~ B 2]
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(21)

Q
(T, T8
Ny [Tu] LW,
T .

(P-P b')dV
[AS'] = _—T + (0]"' =
unlvy sys

(P. -P)dv SLW
w
e s o (22)

s =[5+ = ] - o]

l(ﬂl-ﬂ)-T(Sl—s)lcul .sx,w“l

= T =¥ (23)

(ﬂo‘ﬂ"T‘§O'§’]su° aLW,,
o

[ASMO] L T = T (24)
unlv

Introducing equations (21) through (24) into equation
(17),

Q -
ds = 5[1.—N] + §18Ml §°6M° +

BLW, + SLW_ + ax_w_|+ GLM“°
T (25)
- Q _ LW
ds 5[ T.. ] + S3M - SSM + ¥ (4)

::;:)Tparing equations (21) through (24) with (7) through

8
Lwo = GAQ (26)

BLW = -8A 27
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GLW“I = [JA." = 'l'(_S_l = §)6M‘] (28)

6Lw",, = - [axuo - T(§D- §)6M° ] (29)

‘The physical significance of the energy transport
function, SA, should now be evident. (The difference in
algebraic signs arises because A was defined in a
consistent manner whereas Q, W, GM‘ and 6Mo are defined

by convention.)

In view of equations (21) throdgh (24) the entropy
halance equation (17), (25) or (4) can also be written

e e sm] oo
S I

which is essentially a statement that

l“‘l";““ decrease in entropy of

entropy | —| the surroundings due

of the to heat and mass transfer
system

of the gystem plus
the surround ings due
to heat, work and

increase In entropy
+*
mass transfer

Clearly, equation (31) is--as pointed out earlier in
footnote (3)--both  conceptually and fundamentally
different from Clausius’ equation

das = dcxts ¥ dlmS (32)

where d'nS is the entropy change of the system due to
entropy transfers from the surroundings and de is due

to entropy changes within the system. By this
definition, equation (32) can now be expressed in terms
of its implicit variables

d S= a[%] +SdM (33)

Combining equations (32) and (33) and substituting the
result into equation (17) and recalling equations (8),
(9) and (10)

dlMS =+ T (34)
or with use of equations (27), (28) and (29)
d_S=x [ Sy + 8N, + TS, - Hau, -
LW, - T(S - §)6M°] _ (35)
°
Obiously, dlMS of equation (32) is an incomplete

statement of the entropy production concept [as in
clearly evident by equations (34) and (35) since it does
not take into account irreversibilities due to heat
transfer and a portion of the irreversibilites due to
mass transfer. Equation (32) can be written, by virtue
of equation (8), (9) and (10) as

[ds] =

. (P-P)dV + (H -H)3M - (H ~H)3M
[5[ ] . §dM] N 1 1 o

T
(36)

which is the equivalent of equation (32) and represents

change in entropy of
increase increase in entropy of the system due to all
in the gystem due to the of the irreversibilities
entropy | = |"reversible® parts of | + |arising from work
of the heat and mass transfer transfer, a portfon of
system the irreversibilities
due to mass transfer but
none of the irrever-
sibilities due to heat
thanster @n

The principal difference between the entropy balances,
equations (31) and (37) is that the former focuses on
changes in the entropy of the system and the
surroundings whereas the latter is expressed entirely in
terms of changes in the system. Although equation (25)
or (4) is the common form for the entropy balance, the
interpretation given in equation (31) is generally
overlooked. The most significant difference between the
entropy balances of equations (25) and (36) is that in
the former the last term, LW, is always equal to or
greater than zero because of equation (20) whereas in
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equation (36) the last bracketed term can be negative
since there is not any thermodynamic requirement that
the enthalpy difference terms contained therein be
positive even though the (P - Pb)SV ‘term is always equal

to or greater than zero. Nevertheless, the compatible
form of the Gibbs equation that goes with equation (36)
is still.

dU = TdS - PdV +Gdm (3)

Equation (4) or (25) has been the preferred form of
the entropy balance in practice. Aside from conforming
in structure to the energy balance, its other salient
features include:

(1) It is a direct result of introducing energy
transport or degradation functions (irreversible
concepts) such as equations (7) through (10) into the
energy balance.

(2) The heat transfer term, Q, in equation (4) is
divided by the local temperature at the boundary where
the heat transfer takes place, whereas the lost work
term, LW, is divided by the uniform (representative
average) temperature of the system which might be
substantially different from the boundary temperature.

(3) The lost work term accounts for all of the
consequences of irreversible transfers of heat, work and
mass. Obviously for multicomponent systems undergoing
chemical, electrical, magnetic, surface, etc. effects
additional terms of the general form (Fbw- F)8D, similar

to (Pb -P)8V, will have to be included.
w

The Gibbs
distintive features:

relation, equation (3), likewise has

(1) It can only be applied to a system having uniform
properties throughout at any particular instante of
time; however the properties can vary with time.

(2) As is evident from the foregoing derivations, it is
"applicable” to irreversible as well as reversible
processes (frequently a point of confusion in the
literature).

(3) Although the term GdM as discussed herein was
restricted to mass transfer across the boundary, a
similar, but additional, term which accounts for
"internal transfers or exchanges" due to chemical or
diffusional effects within the system would be needed.
The fact that these two types of mass transfer (external
and internal) are universally lumped within one GdM is a
source of confusion. Notwithstanding, equation (3) can
be generalized for systems undergoing electrical,
magnetic, surface, etc. effects by adding appropriate
"reversible work"” terms similar to PdV.

(4) The only useful form of the Gibbs equation is the
one written for a unit mass of material as explained in
footnote (2).

in this case the GdM term due to mass transfer across
the boundaries disappears, but the corresponding term
due to "chemical work" would not.

OTHER FORMS

Many other "valid" forms of the entropy balance
along with the corresponding reciprocal forms of the
Gibbs equation can be obtained by the methods
illustrated herein since all that is involved is
selective transposition of terms constituting LW as
identified by equations (26) through (29). For example:

«5wa+<SLWM + GLW“

= (9] ..
ds = B[T] +S3M - SaM + T 1 24 (38)

dU = Tds - PdV + GdM (39)

N.ote that the denominator for the first term on the
right of equation (36) is T rather than Tb; 3(Q/T)
q

represents the entropy change of the system due to heat
transfer. It is a result of combining &(Q/T ) with
bg.

GLWQ/'I‘; consequently the LW group within the braces of

equation (38) no longer includes a term for irreversible
heat transfer. Nevertheless the Gibbs relation is
identical to the conventional equation (3).

By similar extraction and transposition of the

terms contained in the LW group, two more compatible
sets are:

T % (40)
dU = TdS* - pdv (41)
and
H M -H M SLW
dse* = 8[ Q] % 1 I o o " Q * 'Swa (42)
bg T T
e
dU = TdS - pdv (43)

(The asterisks on S are used here simply to distinguish
their definitions from equation (4) although numerically
<_:lS = dsS* = dS*.) Note in equation (40) that any
irreversibilities or lost work due to heat and mass
tr.'ansfer are "embedded" in the first two terms on the
right; whereas in equation (42) only the lost work due
to mass tansfer is embedded in the second
Nevertheless, the Gibbs equation for both
same form. The inference here is that the
of itself does not give a comprehensive
entropy except for reversible
system.

term.
cases has the
Gibbs equation
definition for
processes in closed
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CLOSURE

The methodology presented herein may appear on the
surface to be hardly more than a tedious exercise in
futility. In reality the techniques are as wholesome as
tie more conventional practice of forcing the
"-~eversible” Gibbs equation into the energy balance, and
again via the process of equiponderation, arriving at a
preconceived form for the entropy balance. However, the
procedure illustrated in this paper, wherein the Gibbs
equation and entropy balance "fall out” simultaneously,
unmasks potential pitfalls inherent in simply
verbalizing the entropy balance. Whatever the final
verdict, many students and teachers exposed to this
treatment over the past four decades attest its virtue.

FOOTNOTES

I. The quantity (8LW/T) is frequently designated by
other symbols; for example, Sp = entropy production.

2. It is imperative to realize that Gibbs equation was
originally restricted to a one component system of
variable mass. Nevertheless, equation (3) as written is
meaningless when applied to an open system undergoing a
change in mass. In this event, the left hand side of the
:quation, upon integration becomes

(U U) = (MU -MU) = M (U,

Clearly the magnitude of the difference in the total
energy (Uz—Ul) is completely arbitrary and is dependent

energy (Uz_Ux) is completely arbitrary and is dependent

on the reference state selected because of the presence
of the last term (Mz-Ml)gz. (As Bridgman somewhat

ironically commented: "It means nothing to ask what is
the difference of the energy between one and two grams
of iron.") The salvation is to restrict use of the Gibbs
equation to systems of constant (preferably unit) mass:
dU = TdS - PdV

where U = UM,.S = SM and V = VM
Combining these two equations for a system of variable
mass leads immediately to

dU = TdS - PdV + (U- TS + PV)dM
Defining, (U-TS+PV) = G, results in equation (3).
3. As will be shown later this form of the entropy

balance is both conceptually and fundamentally different
from the Clausius equation

dS=d S+d S
ext int

where the terms on the right discriminate between the
entropy change of the system due to entropy transfers
from the surroundings (d.nS) and to entropy generated

within the system (dms).

4. Average uniform properties should not be confused
with the concept of "local equilibrium”; the latter is
hardly more than an equivocal assertion. On the other
hand, it should be wunderstood that an obvious
alternative to the non-uniformity complication is to
integrate over the volume of the system and over the
surface of the boundary. Although these integrals are
copiously displayed in the literature, they are
rarely--if ever--formally solved simply because the
required functional relationships among the variables,
particularly in multicomponent systems, are
non-existent. Consequently, "engineering"” approximations
are the salvation. Furthermore, there seems to be a
redeeming virtue in associating the entropy production
concept with jump discontinuities in the properties.

S. Had it not been for all of the simplifications
introduced at the onset, the more general expression for
67tw would have been

GAW = - (Fuw - Fidb

where the right side of the equation is symbolic for
other forms of work such as surface, chemical,
electrical, magnetic and elastic strain.

6. Equation (19) clearly shows that AG is the "driving
“orce" for mass transfer only when AT = O.

PREFACE

In the Fall of 1974 when I returned to the formal
classroom to teach the required graduate course in
chemical engineering thermodynamics, after an
intermission of several years, I was fortunate to find a
student of the caliber of Oladis Marici Troconis Rincén
in my class. Her dedication and resolve were not
surprising, however, because over the years my
colleagues and I have observed that graduate students in
chemical and petroleum engineering from Venezuela have a
profound interest in thermodynamics. Accordingly, when
Professor Rincén invited me to participate in this
centennial publication, it seemed befitting for me to
select a topic on thermodynamics.

Recibido el 09 de Noviembre de 1991
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