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A decomposition of C" into a finite direct sum of 
orthogonal subspaces can be conveniently represented by 
i t s  orthogonal projector frame. which is  the mllection 
of the corresponding orthogonal projectrirs. Two such 
decompositions whose frames a r e  close a r e  h o w n  t o  be 
linearly homeomorphic and homotopic. In a recent work we 
compared the m u l t i n g  geodesic arcs with naturaily 
arising paths m u l t i n g  from interpolating the balanced 
transformation. and found them cubically close. In this 
work we describe an efficient algorithm t o  compute the 
balanced transformation. 

RESUMEN 

Una descomposición de C" en una suma directa finita 
de subespacios ortogonales puede ser  representada 
convenientemente por su cuadro proyector ortogonal, la 
cual e s  la  colecci6n de los proyectores ortogonales 
correspondientes. Dos de tales descomposiciones, cuyos 
cuadros son cerrados. son "homdrfico y homotdpico". En 
este trabajo. s e  decribe un algoritmo eficiente para 
computar la transformación balanceada. 

columns. The purpose of this  work i s  t o  propose an 
algorithm t o  compute a partichlar unitary U which maps E 
onto F with only matrices of lower order entering the 
calculations. This unitary U i s  called the balanad 
transformation and is  optimal in the senm that  i t  
deviattf minimally from the identity in the Frobenius 
norm í41. 

The mmputation of U. beside being of interest on 
i t s  own. will give information about the principal 
angles. The principal angles have many applications in 
s t a t i s t i n  and numerical analysis. In 111. the 
statistical models of canonical correlations, factor 
analysis and stochastic equations are described in terms 
of the principal angles. üther applications can be found 
In numerical analysis 1161. and theory of approximate 
least squares 121. 

We present the notation and preliminaries in 
Section 2. We also compare U with another unitary which 
i s  geometrically justified as the most natural way t o  
move the frame E onto F. In Section 3 the main result 
about factorizing U is  established. We use this 
factorization t o  construct an algorithm t o  mmpute U, 
this is  given in Section 4. The algorithm is  illustrated 
by a numerical example. In Section 5 we derive 
perturbation inequalities for  the angles between 
subspaces and U(F.E) 

By an orthogonal r-frame E on C". we mean E = 

(ElSE 2..... E-) where E E C" " . 1 a j 4 r, satlsfy 
J 

Let E, F be two orthogonal r-frames on C" (¡.e.. a 
sequence of r rommuting orthogonal projectors which sum 
to  the identity). Assume that  in the decomposition of C" (11 O * E] = E' J J  = E* lsj*.. 
with respect to  the frames E. F. the corresponding 
subopaces M defined a s  ranges of rectangular matrices. ( (11) 1 EJ = 
which might as well be assumed t o  have orthogonal 1-1 

Clearly equation (2.1) implies that  the El's an 

palrwise disJoint, since if 
Key WrOrdS: Orthogonal frames. angles between subspaces. 
matrix inverse square root. perturbations of subspam. 

r 
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and consequently E x  = O. j t i. So E E = 6 E .  r r 
J J I LJ I e x p ~  - 1 F e x p ~  E + 1 E L E = O (2'5) . 1-1 J J = l J  J 

Throughout, r will be fixed and we shall  wr i t e  a f r ame  E 
to  mean an  orthogonal r-frame. 

Two f r a m e s  E and F a r e  sa id  t o  be unitarily similar 
if t he re  exis ts  a unitary ma t r ix  V such tha t  VE = FV, 
tha t  is. VEI = F,V. 1 s j a r. The unitary similarity 

orbi t  of a f ixed f r ame  E; denoted by g r ( ~ ) ,  is t he  s e t  
of f r ames  which a r e  unitarily similar t o  E. namely 

E'(E) = ( VEV*. V i s  unitary matr ix  ). (2 .2)  

In [71 t h e  set $'(E) i s  studied where i t  is shown t o  be 
a Riemannian manifold. In f a c t  if F i s  a close f r ame  t o  
E, then certainly F E ¿?'(E). This will be the  case  if 
f o r  example 

!E-FI = max 1 El-FII < 1. 
I S l S r  

A par t icular  unitary U which realizes t he  equivalence of 
t he  f r ames  E and F i s  

I t  can be  easily checked t h a t  U(F.E)E = F U(F,E), s o  
U(F.E) maps t h  subspace R(E ) onto R(F  1, Isjsr. We also 

J J 
note t h a t  U(F.E) = U(E,F); f o r  t h i s  reason we cal1 i t  
t he  balanced transformation. 

If we want  t o  move t h e  f r ame  E onto F in t he  most 
natura l  and eff ic ient  way within the  s e t  of r - f rames on 
C". t h i s  will not be achieved by oonsidering the  
s t r a igh t  line segment. This i s  because the  s t r a igh t  line 
segment does not l ie in &"(E). since if 

t+  E+t(F-E), Os t s l  l ies in g r ( ~ ) .  

then 

F ( t )  = E + t ( F  -E ) ( I  5 j s r ,  O a t s l )  
J J J J  

i s  an  orthogonal projector.  Thus 

This lmplies t h a t  E, = F,  f o r  al1 j and hence E = F. 
J J 

However, a locally minimal a r c  in ~ ' C E )  which connects 
E, F will be t h e  geodesic a r c  t + ( ~ ~ ( t ) l : = ~ .  t E IO,ll. . . 
F(0)  = E. F(1) = F, where  F (t) i s  defined by 

J 

I t  i s  shown in 171 t h a t  t he  length of t he  geodesic a r c  

connecting E and F i s  !LB, (¡Lb, = ( t r  L.L)''~), which 

jus t i f ies  calling expL the  di rect  ro ta t ion between E and 
F. 

Both uni tar ies  expL and U(F.E) give r ise  t o  paths  
in $'(E) connecting E and F. However these paths  a r e  in 
general d i f ferent  1101. The f i r s t  unitary has  geometric 
significance. The second unitary U(F,E). i s  not the  most 
natura l  way t o  move the  subspace R(E ) onto R ( F  1. 

J J 
I s j s r .  but s t i l l  ha s  t h e  advantage tha t  i t  is expressed 
algebraically in t e rms  of E and F. Also i t  is recently 
shown in 1101 t h a t  U(F,E) i s  sti l l  ciose to  expL, namely 

S o  even if one i s  interested in computinn e x ~ L  via . - .  
solving (2.5) i teratively, a good initial  approximation 
will be U(F,E). 

Let Y? Y2cs .... S Yr and MI (B M 2  (B ... (B M r  be the  

decomposition of C" ar is ing f rom E and F respectively. 
Tha t  is, Y = R(E and M = RíF  1. l s j s r .  There  a r e  

J J J J 
d i f ferent  ways to  identify subspaces of f. In our  case  
we will define the  subspaces using orthonormal matrices. 

nxn 
Namely, f o r  j = 1,2 ,..., r. let V .  W E C where 

J J 

The above identification i s  unique only t o  within a 
post-multipllcation by a n  a rb i t r a ry  unitary n J x n J 
matr ix .  

The balanced t ransformat ion U(F.E) can be computed 
directly using equation (2.3). where the  inverse square  
root  of a n  n x n ma t r ix  i s  t o  be computed. Such an  
inverse square  root  can be computed using. f o r  example, 
t he  numerically s t ab l e  technique suggested in [141. 
However, if n i s  large, t he  above procedure which i s  of 
o rde r  0(n3) will be computatiorially expensive. The 
purpose of t he  next  section i s  t o  propose a 
factor izat lon of U(F.E) s o  tha t  only lower o rde r  
matrices. n x n and n x n will en t e r  t he  

J' J J 
calculations. The saving will be remarkable, when the  
res t r ic t ion of U(F.E) t o  Y, i s  required with nl<<n. 

F ( t )  = exp(tL) E exp(-tL), l s j s r .  (2.4) Remark  2.1. If t he  subspaces Y,. M a r e  defined by A 
J J J' 

B respectively. I s j s r ,  then a QR factor izat ion s t ep  i s  
Here L i s  a skew hermitian ma t r ix  (L  = -L ) and J 

s a t i s f i e s  t h e  ma t r ix  equation needed t o  get  V J' Wf 
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3. A FACTORIZATION OF U(F.E) Further, Z = (Z,. ZZ, ....., Z ), where the  Z 'S a r e  
J  

defined by (3.51, sa t isf ies  

The following relations a r e  well known, c f ,  [3,81, 
wa: list  thern fo r  the  sake of cornpleteness. For two 
frarnes E and F we define (T(Z,E)T~)'  = T(F ,E)T~ .  (3 .8)  

t t e n  we have f o r  I s j s r ,  

( i i )  C E = E C  C F  = F C  
J  J  J J '  J J  J J  

( i i i )  E C E  = E F E  , FICJFI = F E F  . 
J  J  J  J J J  

Proof .  Frorn e q u a t i o n , ( 3 . 4 ) ,  we have by direct 
calculations using (3.2). T = T and T' = 1. 

J  J  J  

Equation (2 .3)  can be equivalently wri t ten a s  

Further T E  = c-'/'F E = F T , since F cornrnutes 
J J  J  J J  J J  J  

with C .  Hence indeed T exchanges P and M .  To prove 
J  J  J  J  

(3 .6)  we note tha t  F T F  2 O is equivalent t o  E T E  b O 
J J J  J J J  

since F T E = T (E T E IT , hence we show tha t  E T E 2 
J J J  J  J J J  J  J J J  

o. 

E T E = c-'" E F E = c-"' E C E = E C l / Z ~  20, 
J J J  J  J J J  J  J J J  J J  J  

This follows by direct calculations, using 
p-operties of the  C 'S listed in (3.2). Further. se t  

J  

T = T !F , E  = C-'/'(F~+E,-I), ISjsi-, (3.4) 
J  J J J  J  

and associate Z with T where 
J  J  

'Ihe following theorern records -some properties of the 
7 ' s .  Also it  e x p r e s e s  U(F.E) in terrns of the T 'S 

J  J  

l h e o r e m  3.1. Each T is a hermitian involutari rnatrix 
J  

exchanging P with M and 
J  J  

since C 20. Frorn equation (3.3) we have 
J  

hence (3.7) follows. Now since TI i s  a herrnitian 

involutary matrix. then Z is an  orthogonal projector.  
J  

Hence if we define T ( Z  E ) by equation (3.41, 
J  1' J  

T (Z  ,E ) will be a herrnitian involution which exchanges 
J J J  

R (Z  ) with R (E  1. Further, since 
J  J  

T ( Z  E )E = Z T ( Z  E 1, we have 
J J ' J J  J J J ' J  

[ T  ( Z  ,E )(2E -1)12 = T'(Z , E  )(2Z -1)íZE -1); 
J J J  J  J J J  J  J  

E T E e O. F T F 0, Is jSr .  (3 .6)  but T' ( Z  , E ) = 1. hence (3.8) follows. J J J  J J J  J J J  

:he balanced transforrnation U(F.E) can be expressed in 
terrns of the  T 'S a s  follows 

J  Ksrnark 3.1. The cornponents Z of Z a r e  orthoprojectors 
J  

on subspaces which can be named a s  the  bisector 
(3.7) subspaces of Je and Al. th is  can be seen frorn equation 

J 

- 163 - 
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(3.8). see also 131 in case of a pair of subspaces. 
However. in g e n e a l  Z &(E). r > 2; in  case of a 2- 
frame Z = (Zl.Z2) will be a frame. This follows s i n a  

= -T. henoe indeed Z + Z = 1. 
1 2  

We construct an orthonormal basis of the bisector 
subspace RíZ in terms of V and W This mnstruction 

J  1 J. 
extends in &me sense the d c u l a t i o n ~ o f  the bewctor of 
two unit vectors in the plane.Once this base is  
established we can mmpute T and mnsequently U can be 

J  
mmputed via equation (3.7). 

Theorem 3.2 Let w,);=, and {w,);=~ be as defined in 

(26). 

But 

CV = (1-E-F+EF + F E )  VJ 
J J  1  J  1 1  J J  

m m 
=(I-V v a -  w w m + v  V* W W ~ + W W  V V )V 

J  J  J J  J  1 I J  J J  J  J  J  

m * m  
= v (W v (WJVJ). 

J J J  

H e n a  if we set 

ti) n e r e  exists an orthonormal matrix X,. l c j i r .  such we get 

that  R(X ) = Y .  and X is  the closest orthonorkal basis 
J J  J  

t o  v .  
1 

m 
(ii) Set Y = W V . then X in part  (i) can be expressed 

J  J J  J  
as follows: 

c4 = C V L  = V L ~  
J J  J J J  J J  

x = w Y (Y*Y )-In. I s j s r .  Inductively. cm V = VL- for  any positive integer m. 
J  J J  J J  J  J  J J  

Hence f(C)V = Vf(L) for  any mntinuous function on 
(iii) If G = X +V then N = G (G*G 1-*. l s j s r ,  is  J J  J  

.J  J J '  J  J  J J  IO.11, so i t  is t rue for  the inverse square root 
an orthonormal basis of the bisector subspace YNZ.). function. that  is. 

J 

Rmf. Define H .  l s j s r .  by 
J  C-'R v = v L-lR. 

J  J  J J  

m But 
Upon using equations (2.3) and (2.6) we have H H = 

* 1 J  
H H = 1. Let 

J  1 H = W* C-* 
J  J J V J  

X = WH 
J  J  J' 

m m = W* V L-'" = y )-*. 
so X X = 1. and X X = W W = F ; and indeed X is  a J  J J  J  J J  

J J  J J  J J  J  J  
basis for  Y = R(F ) which is  closest t o  V (because X = 

j .  J  1 J  

U(F.E)V 1. To prove (ii). we have 
J  

m m 
H = W U(F.E)V = W T V 

J J  J  I J J '  
Next we use X t o  establish basi; fo r  R(Z 1. We set 

as follows f m m  the factorization of U(F.E) in equation J  J  
(3.7). Hencc 

G = X  + v .  
J J J  

Now G is  a basis for  R(Z 1; this i s  because G = X + 
J  J  J J  

V = T V  + V = 2S VI. hence R(G) = R(Z 1. An 
J  J J  J  J  J  J  

orthonormal basis N for  R(G can be established as 
J  J  
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N = G (G*G )-In , l s j s r  . 
J J J J  

That  is. N i s  t h e  unitary polar f ac to r  in the  polar 
J . 

decomposition of G So indeed N N = Z and the  proof J' J J  J 
i s  complete. 

Remark 3.2. We note tha t  al1 inverse sqilare root  
operations involve matrices of lower order  n x n .  

J J 
Further. if i t  is only required t o  compute U(F.E)Ek . 
then factorization (3.7) reduces the  pr-oblem t o  
computing T E only. These two points i1lu~;trate the  

k k 

advantage of using (3.7) to  compute U(F,E) r a the r  than 
the  direct  formula (3.3). 

Remark 3.3. In some s ta t is t ical  applicationc. one is 
interested in bases f o r  the  bisector subspace. For 
example, in f ac to r  analysis, the choice of coordinate 
system plays a prominent role. Here one i s  iriterested in 
referr ing a s e t  of observations to  especi,illy chosen 
referente axes  defined in some Euclidean space. In 
particular instances i t  i s  desired t o  define a 
coordinate system located "mid way between" two  other 
coordinate systems 1121. In these instances wp can apply 

Theorem 3.2 ( i i i l  t o  find such a coordinate sys7f.m. 

The case r = 2 i s  particularly important. In this  
case i t  can be shown 181 tha t  expL = U(F.E). Further. 
one can check tha t  indeed U(F.E) sat isf ies  the  rquation 

The above equation suggests tha t  compute U(F.E). 
one has  t o  compute the  principal square rwt of 
(2F.-1)(2E1-1). The procedure suggested by Theorem 3.2 

will be computationally efficient. since from equation 
(3.7) we  have U(F.E) = T1EI + T (1-E). But T2 = - T1 

hence U(F.E) = T (2E -1). So we need only t o  compute 
1 1  

We end this section by pointing out tha t  such 
decomporitions of C" a r i se  when (YJ )  and {MJ) a r e  

reducing subspaces of two nearby operator+. Such case 
was  studied in 151 f o r  the  case of 2-frames and f o r  the  
case  of r - f rames in 191. 

4. ALCORITHM 

Let. in the  decomposition of c. t h e  subspaces be 
defined by rectangular matr ices  (V )r (w);,, . which 

J J=L' 

we assume orthonormal; cf.(2.6). In the  seque1 we shal l  
need t o  compute the  polar demmposition of a rectangular 

matrix. 'Ihere are different  techniques t o  achieve th i s  
16,131. One approach i s  b a y d  on the  use of SVD of the  
given matrix. Let A E ? . krL be a full  rank matrix. 
consider SVD of A 

(4.1) 

where D = diag (S  (A). S (A) ...... SC(A)). Sl(A) r s ~ ( A )  

a ... E S ( A ) r O ;  

Here {Sl(A))I=l a r e  called the  singular values of A.P 

and Q a r e  unitaries. If we partition Q a s  Q = IQ,, Q21 
L where Q,E C? . then in the  polar decomposition of A, A 

= BH. the  unitary polar f ac to r  B i s  B = QIP . Note tha t  

B = A(A*A)-"~. In 161 another approach was  proposed to 
construct t he  polar f ac to r  of a square ma t r ix  by 
applying the  iteration 

Then Br+ B quadratically. If t h e  matrix A is not square  

a QR factorization s t ep  i s  needed and then we apply 
(4.2) t o  R. The l a t t e r  approach does not give 
information about singular values. 

Remark  4.1. The algorithm t o  be described will enable u s  
a lso t o  compute the  angles between subspaces 2 M .  

J' J 
Each pair of subspaces f.. 11 i s  characterized in t e rms  

J J  
of cer ta in  angles called principal angles. These angles 
constitute the  spectrum of a hermitian positive definite 
matr ix  e .  In f ac t  

J 

The spectrum of cl" is t h e  same a s  the  se t  of singular 
n 

values of W*V namely ((cose ) where ( e  ) n ~  a r e  
J J' Jk k=1' P k=I 

t he  principal angles between Y J  . M .  Also the  spectrum 
n 1 

(sin 0 ) ' of Lc.e  i s  t he  same a s  tha t  of F-E 
Jk k=1 J J J' 

and i s  t he  same a s  the  se t  of singular values of w'* 
J 

Vlíhere W: i s  orthonormal bases of Al: which can be 

obtained f r a m  W1 i j) t h a t  is. For t h e  proof of these  

f a c t s  we r e f e r  t o  I5.15.171. 
We now summarize the  ~uinputat ional  procedure t o  

compute U. a s  well a s  other  relevant quantities such a s  
t h e  principal angles o r  bases fo r  bisector subspaces. 
when the  orthonormal matr ices  (v~);=~;  (w);,, are 
given. 

Step 1. For j = l. .... r do Step 2 t o  Step 6 . 
Step 2 Se t  Y = W V .  

J J J  
Step 3 Find SVD bf Y .  s e t  B = Y (Y*Y 1-'". 

J J J J J  
Step 4 Se t  X = W B . GJ = XJ + VI.  
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Step 5 Compute N = G (G*G )-"' 
J * J  J J  

S tep 6 Set  Z = N N  T = 2 2  - 1. E .  = VV • 
J J J  J J J J J  

S tep 7 Set  U = t 
J =1 

In applying the  . previous algorithm. the  angles 
between subspaces can be computed. if required. in Step 
2 a s  pointed out in Rernark 4.1. In Step 5. we can 
compute any orthonorrnal bases f o r  R(G 1, f o r  exarnple a 

QR factorization s t ep  will be enough. however N i s  the  

optirnal one I131. Finally the  inverse square root  
encountered rnay also be cornputed a s  in [141. 

We i l lus t ra te  the  previous algorithm by the  
following numerical example. 

Example 4.1. Consider the  following subspaces in R' 
determined by 

and 

Wl = [ -o:: -0.5 ] Wz = [:o:: 0.5 -0 .5  -o::] w3 = [ &i ] 
0.5 -0.5 -0.5 -0.5 

and p,}:-l as in (2.6). 

We s e t  f o r  1 S j S r 

n n 

(pJk) = ( s in  eJk) ' , 
/ k = 1  k=1  

n 
where (e ) a r e  the  principal angles between Y M .  

Jk k=l  J' J 
Also we s e t  

1 c(;,) = diag {GJ1 ,... }. GJ; ~ J , z . . . ~ J , n J  2 0 

- 1 -  - Applying the  previous algorithm, the  principal angles 
[ S(<) = diag { L ~ ~ . . . . , P ~ , ~  . P,; z o .  

between R(V ) and R(W 1, 1 S j 5 3 a r e  
J J 

J J 

The balanced t ransformat  ions is 

A relation similar t o  (5.2) holds where 

0.50000 0.00000 -0.707 11 0.50000 principal angles between "yJ. " M .  The purpose of th is  
-0.50000 0.70711 0.00000 -0.50000 

J 
section i s  t o  derive some perturbation inequalities f o r  

0.50000 0.00000 0.7071 1 -0.50000 C(e ) and S ( e )  and U(F.E) in terms of the  perturbations 
0.50000 0.70711 0.00000 0.50000 1 J J 

in V and W 
J J' 

We rernark t h a t  iteration (4.21 can be applied in Step 2 The perturbation bounds in this  section will be 
instead of the  SVD if the  principal angles a r e  not cas t  in terrns of unitarily invariant norrns. A unitarily 
requiered. invariant norrn on cm " is a rnatrix norm with the  

additional property tha t  f o r  A E cm " 

5. A PERTURBATION INEQUALITY 
IPAQQ = !A[ . 

Let E* be the frames with the if P,Q a r e  unitaries. We shall be dealing with matrices 
decOrnPOsitOn 0f C" into ... and MI '.' * Ar. of varvinn dimensions. hence we shall consider a familv - 
zuppose_these subsp_aces are p r t u r b e d  so tha t  we have of unitarily invariant norrns defined on 

Yl e Y? + ... s Yr and Ai e ... s - H ~ .  As before 
. . -  

suppose E, T are defined by orthonormal matrices 
m 

U c m x n .  
m n=l 
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Ne re fe r  to  (151 f o r  details about unitarily invariant diagonal elements of C ( e )  (Remark 4.1). similarly f o r  
iorms. In particular II.I, wil denote the  spectral norm. , J 

3 V .  Now we apply Theorem 5.1 t o  get 
J J 

The following theorem is well known [121. 

rheorem 5.1. Let p, 2 p r ... a p and o a . . .  2 o be 
P P 

the singular values of the  matrices A ,  E, then 

in any unitarily invariant norm 

Let C(e  ), S(eJ).  c(GJ). S(; 1 be defined a s  in (5.1) 
J J 

and (5.3), then we now prove the perturbation 
inequalities 

Theorem 5.2 

( i )  [E  - E U s 2 min (IlV - c 1. [v: - cfll 
J J J 1 

Similarly we can prove (iii)  

Remark  5.1. The constant in the inequality in pa r t  ( i )  
is reduced t o  1 in case  of the  spectra l  norm while i t  is 

in the  Frobenius norm. This i s  because V* J J has  

, 
the  same singular values a s  V' V .  Namely, we have 

J J 

( i i i)  !s(eJ)- s(GJ)[ 5 $vJ  - YJ[+!wf - W;ll In particular 

in any unitarily invariant norm 

Proof .  

s [v-Y 11 . 
J 1 2  

[ E  - E [ = I I V V * -  Y Y*] 5 ivJ  + YJI\vI - YJI1 
J J J J  J J  

Similarly 

Hence ( a )  follows. A similar inequality holds for 

RFJ ,- 711. 
For pa r t  (ii). we have 

w v - *Y C J  w VJ - " VJ1 + 

However the  singular values of W V. a r e  precisely the  
J J 

Finally we present a perturbation inequality f o r  
U(F.E). For t h a t  we need the following theorem which. is 
also of interest.  

Theorern 5.3. Let K, be skew hermitian matrices. then 

, 

l eK - eKu 5 U K  - 21 

in any unitarily invariant norm. 

Proof. The proof is based on the following identity 

This identity i s  introduced and used in [181. Hence upon 
integration 
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U l(e(l-l)K Ü 
However le(1-'K12 = l e  l 2  = .e being 

unitaries) h e n n  

In 181. U(F.El was lacally characterized, and i t  
was  shown t h a t  If K = log U(F.E). then K i s  t h e  unique 
solution of the  operator equation 

exp  K - FJexp KE - s i n h  K = O 
J = l  J J=i 

ihe abre  theorem shows t h a t  

lv(F. E) - U(F,E)l S )K - KI. 

In case  of 2-frame with  E = E. l e t  6 be the  angel matr ix  - 
between A,. 4 ; i t  i s  t he  same a s  the  of A2. A2. H e n n  

(u(F.Zi - u(F.E)( m ~ ( u ( F . n  - ri U(F.E)~ 

= ~ ~ ( " F F I  - 11 1 1 e. 1. 

The las t  inequality follows from Theorem 5.3. 

Finaliy we remark t h a t  al1 the  resul ts  in this  work 
a r e  s t i l l  valid if we have orthogonal r - f rames on a 
Hilbert space. 
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