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ABSTRACT

A decomposition of C" into a finite direct sum of
orthogonal subspaces can be conveniently represented by
its orthogonal projector frame, which is the collection
of the corresponding orthogonal projectors. Two such
decompositions whose frames are close are known to be
linearly homeomorphic and homotopic. In a recent work we
compared the resulting geodesic arcs with naturally
arising paths resulting from interpolating the balanced
transformation, and found them cubically close. In this
work we describe an efficient algorithm to compute the
balanced transformation.

RESUMEN

Una descomposicién de C" en una suma directa finita
de subespacios ortogonales puede ser representada
convenientemente por su cuadro proyector ortogonal, la
cual es la coleccion de 1los proyectores ortogonales
correspondientes. Dos de tales descomposiciones, cuyos
cuadros son cerrados, son "homérfico y homotépico™. En
este trabajo, se decribe un algoritmo eficiente para
computar la transformacién balanceada.

1. INTRODUCTION

Let E, F be two orthogonal r-frames on c" (ie., a
sequence of r commuting orthogonal projectors which sum
to the identity). Assume that in the decomposition of
with respect to the frames E, F, the corresponding
subspaces are defined as ranges of rectangular matrices,
which might as well be assumed to have orthogonal

Key words: Orthogonal frames, angles between subspaces,
matrix inverse square root, perturbations of subspaces.
AMS (MOS) Subject Classificaction. 65F25, 65F30, 15A23,
15A60.

ON TRANSFORMATIONS AND PERTURBATIONS
OF ORTHOGONAL r-FRAMES

columns. The purpose of this work is to propose an
algorithm to compute a particular unitary U which maps E
onto F with only matrices of lower order entering the
calculations. This unitary U is called the balanced
transformation and is optimal in the sense that it
deviates minimally from the identity in the Frobenius
norm [4].

The computation of U, beside being of interest on
its own, will give information about the principal
angles. The principal angles have many applications in
statistics and numerical analysis. In [1], the
statistical models of canonical correlations, factor
analysis and stochastic equations are described in terms
of the principal angles. Other applications can be found
in numerical analysis [16], and theory of approximate
least squares [2).

We present the notation and preliminaries in
Section 2. We also compare U with another unitary which
is geometrically justified as the most natural way to
move the frame E onto F. In Section 3 the main result
about factorizing U is established. We wuse this
factorization to construct an algorithm to compute U;
this is given in Section 4. The algorithm is illustrated
by a numerical example. In Section 5 we derive
perturbation inequalities for the angles between
subspaces and U(F,E)

2. NOTATIONS AND PRELIMINARIES

By an orthogonal r-frame E on C", we mean E =

x n .
(Ex'Ez""'Er) where EJ ecC" , 1 = j =r, satisfy

()0+E =E*=E 1sjsr
! (Rt s

| an i E =1 @
=1

Clearly equation (2.1) implies that the El's are
pairwise disjoint, since if

2 \ 2
IExI® so } IEx]*=0 -

X € R(El). Ix] =
)=l J=1

0~~~
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and consequently ij = 0, j # i, so EJE‘ = BUEI.

Throughout, r will be fixed and we shall write a frame E
to mean an orthogonal r-frame.

Two frames E and F are said to be unitarily similar
if there exists a unitary matrix V such that VE = FvV,
that is, VE'.J = FJV I = j = r. The unitary similarity

orbit of a fixed frame E, denoted by 8'([—:), is the set
of frames which are unitarily similar to E, namely

-
€"(E) = { VEV , V is unitary matrix }. (2.2)

In [7] the set €"(E) is studied where it is shown to be
a Riemannian manifold. In fact if F is a close frame to
E, then certainly F e €"(E). This will be the case if
for example

|E-F] = max | El-FxI <1
1SisSr

A particular unitary U which realizes the equivalence of
the frames E and F is

r r
=U(F.E)=(Z FE)(Z EFE ) (23)
L, L

It can be easily checked that U(F,E)JE = F U(F,E), so
U(F,E) maps th subspace R(E) onto R(F) Isjsr. We also

note that U(F, E) = U(E,F); for this reason we call it
the balanced transformation.

If we want to move the frame E onto F in the most
natural and efficient way within the set of r-frames on
Cn, this will not be achieved by oonsidering the
straight line segment. Thls is because the straight line
segment does not lie in €"(E), since if

t> E+t(F-E), Ostsl lies in E"(E),
then

Fj(t) = !-ZJ + t(FJ—EJ)(l <jsr, 0=t sl

is an orthogonal projector. Thus

= Fj(t) - Ft) = (tz—t)(FJ-Ej)z Ostsl 1=jsr.

This implies that E = F for all j and hence E =

However, a locally mmlmal arc in &'(E) whlch connects
E, F will be the geodesic arc t - (F (t)) v t e [0,1],

F(0) = E, F(1) = F, where Fj(t) is defmed by

Fj(t) = exp(tL) !-IJ exp(-tL), 1sj=r. (2.4)

.
Here L is a skew hermitian matrix (L = -L) and
satisfies the matrix equation

r r
expL - z F_expL E + Z E LE =0 (P )]
. b (R

It is shown in (7] that the length of the geodesic arc

-
connecting E and F is ILIF (|L|F = (tr L L)Y?, which

Jjustifies calling expL the direct rotation between E and
F.

Both unitaries expL and U(F,E) give rise to paths
in E°(E) connecting E and F. However these paths are in
general different [10]. The first unitary has geometric
significance. The second unitary U(F,E), is not the most
natural way to move the subspace ﬂ(EJ) onto R(F),

Isjsr, but still has the advantage that it is expressed
algebraically in terms of E and F. Also it is recently
shown in [10] that U(F,E) is still close to expL, namely

JU(F.E) - ExpL| = o(|F-E|®).

So even if one is interested in computing expL via
solving (2.5) iteratively, a good initial approximation
will be U(F,E).

Let £ £0...0 £ and X © H_ ® ... ® M be the

1 2 r 1 2 r

decomposition of C" arising from E and F respectively.
That is, 2] = ﬂ(EJ) and .6(, = -R(Fj). Isj<r. There are

different ways to identify subspaces of Cc". In our case
we will define the subspaces using orthonormal matrices.
nxn

Namely, for j = 1,2,...,r, let VJ, WJ ec ! where

: -
" (2.6)
)

£
u

=
€

The above identification is unique only to within a
post-multiplication by an arbitrary unitary nJ x nJ

matrix.

The balanced transformation U(F,E) can be computed
directly using equation (2.3), where the inverse square
root of an n x n matrix is to be computed. Such an
inverse square root can be computed using, for example,
the numerically stable technique suggested in [14].
However, if n is large, the above procedure which is of
order O(n”) will be computationially expensive. The
purpose of the next section is to propose a
factorization of U(F,E) so that only lower order
matrices, n x n, and nJ x nJ will enter the

calculations. The saving will be remarkable, when the
restriction of U(F,E) to 2'1 is required with nl<<n.

Remark 2.1. If the subspaces ZJ, MJ are defined by AJ,
B respectively, lsjsr, then a QR factorization step is

needed to get VJ. WJ.
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3. A FACTORIZATION OF U(F,E)

The following relations are well known, cf, (3,8],
we  list them for the sake of completeness. For two
frames E and F we define

C =(F +E - D, 1sj=r ; (3.1)

tten we have for 1=j=r,
(i) OsCJSI
(ii) CJEJ = EJCJ. CF =FC (3.2)

(iit) ECE. =EFE ,FCF =FEF .
i | i T Y i i | 1

Ejuation (2.3) can be equivalently written as

Y B r fi P
U(F,E) = (JZIFjEJ) (jZlEJFJEJ)

| r
(YFEXYECY%E) (3.3)
J; 17 le 1Ty

.
= XFC“’ZE .
L0

This follows by direct calculations, using
p-operties of the Cj's listed in (3.2). Further, set

-172,

T =T(F,E)=C F4E 1), I1=j=r, (3.4
) R J) J ¢ 11 ) L ( 4
and associate Z.l with ’1"J where
1 -
ZJ =5 (I + Tj), I=jsr. (3.5)

The following theorem records some properties of the
'IJ’s. Also it expresses U(F,E) in terms of the TJ’s.

Theorem 3.1. Each TJ is a hermitian involutary matrix

exchanging 2) with MJ and
ETE =20, FTF. = 0, Isjsr. (3.6)
i ¥33

The balanced transformation U(F,E) can be expressed in
terms of the Tj's as follows

r
U(F,E) = le TE, . (3.7)

Further, Z = (Zl. Zz, ..... .

defined by (3.5), satisfies

Z ), where the ZJ’s are
r

(T(Z,E)To)z = T(F,E)T,. (3.8)

Here

= E = Hy = 2E -1
T(ZE) = (T(ZED_ . T, T )T, J

Proof. From equation , (3.4), we_ have by direct
calculations using (3.2), TJ = TJ and TJ =L

Further TE = c;‘/ *®

with CJ. Hence indeed TJ exchanges 2] and MJ. To prove

E = FT, since F commutes
I J i

(3.6) we note that F]T,FJ = 0 is equivalent to EJTJEJZ 0

since FTE = T (ETE)T, hence we show that ETE 2
% | R T, 0 | 11
(o)}
172 1/2

ETE = €Y EFE =6Y BCE. = EE€Y%E20,
o1 e T T T 1t T [

since CJaO‘ From equation (3.3) we have

r
U(F,E) = B Bl = Z cY2FE
DR R

l
ne~1-

1)

151

!
¢ (F. + E-DE, = Z TE
) T N N

|
ne~—1-

=
hence (3.7) follows. Now since TJ is a hermitian
involutary matrix, then ZJ is an orthogonal projector.
Hence if we define TJ(ZJ'E]) by equation (3.4),
TJ(ZJ,EJ) will be a hermitian involution which exchanges

S'Z(ZJ) with R (EJ). Further, since
T(Z,E)E = ZT(Z,E), we have
39 1 31J ¥y 1

2 2
T(ZE)RE -]~ = TAZE.J2Z ~T)(2E ~1);
[ _|( ¥ j)( 5 )] J( v J)( i ( EJ 1);

but T? (ZJ, Ej) = I, hence (3.8) follows.

Remark 3.1. The components Z.I of Z are orthoprojectors

on subspaces which can be named as the bisector
subspaces of 2) and MJ, this can be seen from equation
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(3.8), see also [3] in case of a pair of subspaces.
However, in general Z ¢ 8'(E), r > 2; in case of a 2-
frame Z = (Zl,Zz) will be a frame. This follows since

“Z+Z =l@+T +T), with T
8 2 2 1 2 2
= _Tl' hence indeed Zl + Zz =L

We construct an orthonormal basis of the bisector
subspace R(ZJ) in terms of V, and WJ. This construction

extends in some sense the calculation of the besector of
two unit vectors in the plane.Once this base is
established we can compute TJ and consequently U can be

computed via equation (3.7).

Theorem 3.2. Let (v,):_l and (w]);_l be as defined in
(2.6).

(i) There exists an orthonormal matrix XJ, 1=j=r, such
that ﬂ(X’) = ‘.I' and x] is the closest orthonormal basis
to V..

]

-
(ii) Set YJ = WJVJ. then Xj in part (i) can be expressed

as follows:
.
X = WYY Y) % 1=j=r.
3 J) 1)

L
Gii) If G = X#V, then N = GJ(G]GJ)_W. 1=j=r, is
an orthonormal basis of the bisector subspace R(Z).
J

Proof. Define Hj, 1=j=r, by

-
H =W U(FE)V.
] ] ]

L]
Upon using equations (2.3) and (2.6) we have HJ Hj
L]
HH =1 Let
! IR )

-

L] L
so X X=1, and XX = WW = F; and indeed X is a
I | 1) ] J )

basis for ‘, = ﬂ(Fj) which is closest to Vj(because )(j

U(F,E)VJ). To prove (ii), we have

L L]
= JE)W =W T V,
Hj Wl U(F,E) ) ¥ oY
as follows from the factorization of U(F,E) in equation
(3.7). Hence

. -1/2
= -0 C \",
Hj w] (E’ + Fj ) . 7

- = L] 12
= ‘x l C v
w"(Vj VJ + ijj ) ) )

CV =(I-E-F+EF +FE) V
1] ) 1)) 1) )

. L3 L Ld - -
=(-VV -WW +V V WW + WW V V )V
) ) 1) J ) 1) Y13 ) )

+s s =
= V) (Wj V]) (WJVJ).

Hence if we set

we get

Inductively, CT V] = VJLT for any positive integer m.
Hence f(CJ)VJ = ij (L) for any continuous function on

[0,1], so it is true for the inverse square root
function, that is,

c2y =vL?
S T
But
L ]

H=W cv

| 110

o - _

=W vL " =y(y y) 2

el

Thus

. l=j=r.

Next we use )(J to establish basis for R(Zj). We set
G =X +V.
J i | J
Now GJ is a basis for R(ZJ); this is because (_',J = xj *

V = TV + V = 2Z =
§ 8 5 : VJ, hence R(G]) 7((2,). An

orthonormal basis N] for R(GJ) can be established as
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12 .
N =G.(G -
g J( ]Gj) I<j=r

That is, NJ is the unitary polar factor in the polar
L ]
decomposition of GJ' So indeed NJNJ = Z] and the proof

is complete.

Remark 3.2. We note that all inverse square root

operations involve matrices of lower order nl x n].

Further, if it is only required to compute U(F,E)Ek 5

then factorization (3.7) reduces the problem to
computing TkEk only. These two points illustrate the

advantage of using (3.7) to compute U(F,E) rather than
the direct formula (3.3).

Remark 3.3. In some statistical applications, one is
interested in bases for the bisector subspace. For
example, in factor analysis, the choice of coordinate
system plays a prominent role. Here one is interested in
referring a set of observations to especially chosen
reference axes defined in some Euclidean space. In
particular instances it is desired to define a
coordinate system located "mid way between" two other
coordinate systems [12]. In these instances we can apply

Theorem 3.2 (iii) to find such a coordinate system.
The case r = 2 is particularly important. In this

case it can be shown [8] that expL = U(F,E). Further,
one can check that indeed U(F,E) satisfies the ecquation

U%(F,E) = (2F -D(2E -D).

The above equation suggests that compute U(F,E),
one has to compute the principal square root of
(2Fl—l)(2F_“-I). The procedure suggested by Theorem 3.2

will be computationally efficient, since from equation
(3.7) we have U(F,E) = Tll:‘.l + Tz(l—El. But Tz =-T

hence U(F,E) = Tl(ZEl-l). So we need only to compute

Z =NN .
1 11

We end this section by pointing out that such
decompositions of arise when (2]) and (Jlj) are

reducing subspaces of two nearby operators. Such case
was studied in [S] for the case of 2-frames and for the
case of r-frames in [9].

4, ALGORITHM

Let, in the decomposition of (o4 , the subspaces be
defined by rectangular matrices (VJ):ﬂ, (WJ):_I, which

we assume orthonormal; cf.(2.6). In the sequel we shall
need to compute the polar decomposition of a rectangular

matrix. There are different techniques to achieve this
[6,13]. One approach is ba:fd on the use of SVD of the
given matrix. Let A € C, k=l be a full rank matrix,
consider SVD of A

A=OZP.,£=[3] (4.1)

where D = diag (Sl(A), Sz(A)...... S,(a, s,(A) = SZ(A)
ET St(A)zO.,

Here (Sl(A))f=l are called thel singular values of A,P
and Q are unitaries. If we partition Q as Q = lQl, 021
where Qle (o t, then in the polar decomposit.ion of A, A
= BH, the unitary polar factor B is B = le . Note that

.
B = A(A A)% In [6] another approach was proposed to
construct the polar factor of a square matrix by
applying the iteration

B =A

1
rel 2

®B) B ™. (4.2)
T r

Then B'_-> B quadratically. If the matrix A is not square

a QR factorization step is needed and then we apply
(4.2) to R. The latter approach does not give
information about singular values.

Remark 4.1. The algorithm to be described will enable us
also to compute the angles between subspaces .!J, MJ.

Each pair of subspaces ‘Ej' jtj is characterized in terms

of certain angles called principal angles. These angles
constitute the spectrum of a hermitian positive definite
matrix ej. In fact

2 2
C = e, -C =dcl A
) = cos : : € (6]) (4.3)

I/2: .
The spectrum of C_, is the same as the set of singular

- n n
values of WV 1 ! ]
,Vy namely ((cosel)hl, where (em)|l=l are

the principal angles between !) g ‘“3‘ Also the spectrum

n
{sin Bh)kil of l.c.eJ is the same as that of F—Ej.
and is the same as the set of singular values of Wj‘

Vj(here Wj is orthonormal bases of J(j which can be

obtained from Wl i # j) that is. For the proof of these

facts we refer to [5,15,17].

We now summarize the cumputational procedure to
compute U, as well as other relevant quantities such as
the principal angles or bases for bisector subspaces,
when the orthonormal matrices (V) ; (W) are
v 3= )=

Step 1. For j = I,...,r do Step 2 to Step 6
L

Step 2 Set YJ WJVJ.

Step 3 Find SVD of YJ, set B =Y (Y:Y)

] )
Step 4 Set X = WB_, G = .
<ol y o Wil ot + ¥
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Step 5 Compute NJ = GJ(G:GJ)_V2

L
Step 6 Set Z =NN T =2Z -[LE, =VV
] 9 = ) T by i1

r
and {WJ}"_l as in (2.6).

L We set for 1 s j<r
Step 7 Set U=) TE.
&

C(
e.l) Jin

di o5
iag {«.r“, ‘Tj.nj }, crnz G;zz £ . =20

In applying the . previous algorithm, the angles
between subspaces can be computed, if required, in Step
2 as pointed out in Remark 4.1. In Step 5, we can 5(9_])-
compute any orthonormal bases for R(GJ), for example a

dia P - > =2 ES
g {u" uLnJ } I T L
QR factorization step will be enough, however N, is the

. X . 5.
optimal one [I13]. Finally the inverse square root =y

encountered may also be computed as in [14].

We illustrate the previous algorithm by the my G
following numerical example. ' (u]k) = (sin e)k) I
k=1 k=1
. . 3 4 : (5.2)
Example 4.1. Consider the following subspaces in R oy n
determined by (""Jk)k=l = {cos ij)k:l ;
V1=el VZ=[e,e] V:’=e4
")
and where (Bm)k=l are the principal angles between IJ, MJ.
Also we set
-0.5 =0:5 1, /0.5 0.5
Wl = 0.5 W2 = -0.5 -0.5 W3 = 0.5
-0.5 0.5 =-0.5 0.5 C(a) = di & o I
0.5 0.5 | S -0.5 ) BT I et N i e " o T

S(6) = diag {fi ,...n b A zZp z.Ei =
Applying the previous algorithm, the principal angles J & {“Jl “J,nJ} E “J H, =0

between R(VJ) and ﬂ(w)), 1 j=3are
} (5.3)

(3} {21

The balanced transformations is A
A relation similar to (5.2) holds where {E)Jk}k_l are the

wiA

0.50000 0.00000 -0.70711 0.50000 principal angles between £, M. The purpose of this
U(F,E) = |-0.50000 0.70711  0.00000 -0.50000 4 ;

0.50000 0.00000  0.70711  -0.50000

0.50000 0.70711  0.00000  0.50000

section is to derive some perturbation inequalities for
C(e]) and S(e)) and U(F,E) in terms of the perturbations

in V and W.

i} J
We remark that iteration (4.2) can be applied in Step 2 The perturbation bounds in this section will be
instead of the SVD if the principal angles are not cast in terms of unitax;ily invariant norms. A unitarily
requiered. invariant norm on C™ "is a m;xt'{‘ix norm with the

additional property that for A € C"

5. A PERTURBATION INEQUALITY
IPaQ] = [A] .

Let E, F be the frames associated with the

if P,Q are unitaries. We shall be dealing with matrices
decompositon of c" into 2‘0 N Zr and Ml ® ... ® A(r. Q 8

of varying dimensions, hence we shall consider a family
Suppose _these subspaces are perturbed so that we have of unitarily invariant norms defined on

£ @ £ + .. £ and M e .. M. As before

1 2 r 1 r B, -

suppose E. F are defined by orthonormal matrices {VJ}"==l 8 cmxn
n
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We refer to [I5] for details about unitarily invariant
rorms. In particular ||2 wil denote the spectral norm.

The following theorem is well known [12].

Theorem 5.1. Let By = oy L O P and O B o E 0‘p be

the singular values of the matrices A, B, then
i - . - ={A-B
ldiag (p, - o e, - o )l=|A-B]|
in any unitarily invariant norm.

Let Clo), Sle), c«sj), s(éj) be defined as in (5.1)

and (5.3), then we now
inequalities

prove the perturbation

Theorem 5.2
&1

3 = . o 1
(i) [‘EJ - E)H = 2 min (uvJ - vJ|, |v) - qu

(i) naej)-qu)n =, - \”/J||, Iw, - W

)

~ ~ L ~L
(iii) ﬂS(ej)— S(eJ)|| < l[VJ - VJﬂ+|WJ - WJ“

v
in any unitarily invariant norm.

Proof.

5 [ P s Gy
= EJ = - =
IEJ ]l ||VJVJ VJV]ﬂ = ﬂv, + VJ”V! V]"

=2 ]lV‘| - VJH

i S

~ ~ ~1 ~1'
=] = - (1] = - \
IEE| = Jo-£) c-ED] = v V" -V V]

<2 IIVj ~ V1.

Hence (a) follows. A similar inequality holds for
F -F|.
IF, - )|

For part (ii), we have

W v -wils|pw v
J 1 S | 2|

~8
o oy VJ" i

~ ~% ~7 ~
IwJ v, =¥ vj|| s ||wJ = | + |vJ = vj||.

-
However the singular values of WJ V,- are precisely the

diagonal elements of C(ej) (Remark 4.1), similarly for

. .
W.l VJ. Now we apply Theorem 5.1 to get

- . ~ ~
-Cle V-w oV - -V
|C(ej) C(e))ﬂ = |wJ VW, V]| = |w, wj| + |vJ j||

Similarly we can prove (iii).

Remark 5.1. The constant in the inequality in part (i)
is reduced to 1 in case of the spectral norm while it is

L
2 in the Frobenius norm. This is because V) Vj has

.
the same singular values as V? VJ. Namely, we have

L
v-V7]
T

IE, -El =1V,

)
_
1
<
= =
-
e
<
<
1
<t
<?
<
<X
-

- " B 4 | l
2" 0
J ]
In particular
E = l‘ v = L' v -
IE-EN, =1V VI, = Iv;” G-V,
< |v}—vj||2.

Similarly

IE-El. =V 2 Jv -V

Finally we present a perturbation inequality for
U(F,E). For that we need the following theorem which. is
also of interest.

Theorem 5.3. Let K, K be skew hermitian matrices, then

Ko = k-

le
in any unitarily invariant norm.

Proof. The proof is based on the following identity

d -t X
d e(l KK

(1-K _tK (1-k X
at -K e e +e e

K

This identity is introduced and used in [18]. Hence upon
integration
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o 1 - -
X _ K. J‘ (K UK X Sl-uK ®)at
o

S .
K. K (1-tK & w
X = &K = Io [ W E (IS

Ie(l-l)ll eﬂ-UK

However - le Iz = I e being

unitaries) hence
e“-e¥] s |k - K|

In [8], U(F,E) was locally characterized, and it
was shown that if K = log U(F,E), then K is the unique
solution of the operator equation

) i 4
exp K —,Zl F‘Jexp KE] —JZI

sinh' K = 0

The above theorem shows that
JUF, B) - uF,B)] = |K - K].

In case of 2-frame with E = E, let 8 be the angel matrix

between Al, ~All; it is the same as the of J(z. ~Az. Hence

JuE.E) - uF,E)| = JWEF - D UFE]

= JUER -1 s | 8|

The last inequality follows from Theorem 5.3.

Finally we remark that all the results in this work
are still valid if we have orthogonal r-frames on a
Hilbert space.
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