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Movimiento lento de un cuerpo pequeno
en un semi-espacio con deslizamiento
sobre la pared
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Resumen

En el presente trabajo se considera el flujo de Stokes actuando sobre un cuerpo S que se mueve
en presencia de una superficie acotada Y cuando el deslizamiento tiene lugar sobre 3, . El estudio ha
sido efectuado con la ayuda del tensor de Green el cual provee una ecuacién integral de la formulacion
del problema. La fuerza de arrastre sobre el cuerpo ha sido oblenida cuando el cuerpo es de dimensiones
lineales pequenas y la distancia minima entre un punto de S y un punto de %, es grande. Se obtuvo que
el corrector sobre la aproximacion de primer orden de la fuerza de arrastre no es afectada por la presencia
de la superficie acotada. Como una ilustracion se encuentra la fuerza de arrastre sobre una espera que
se mueve paralela al plano de la pared.

Slow motion of a small body in a half-space
with slip at the wall

Abstract

In the present paper the Stokes flow on account of a body S moving in the presence of a boundary
surface X has been considered when slipping takes place on ¥, . The study has been effected by the help
of Green's tensor which provides an integral equation formulation of the problem. The drag force on the
body has been obtained when the body is of small linear dimensions and the minimum distance between
a point of S and a point of X, is large. It is found that correct upto the first order approximation the drag
force remains unalfected by the presence of the boundary surface. As an illustration the drag force on
a sphere moving parallel to a plane wall has been found.

The slow motion is determined by the well
known Stokes equations [1]

2. _Op
LIV uy axj—().

Introduction

The study of wall effects on the slow motion
of a sphere was initiated by Lorentz [7] . He used
the method of reflection which has been extended
by several authors and is admirably described in (1.1)

[4]. O'Neill [8] gave the solution to this problem
in the form of an infinite series. The Stokes flow
on account of a body S moving in the presence of
a boundary surface ¥, may also be studied by the
help of Green's tensor [3] and the results for an
infinite region extended to a bounded region [ 5,
9].

2y _,,
9
These equation are to be supplemented by
the boundary conditions, no slip on the surface
S of the body, and the slip condition namely, the
velocity of the boundary surface 3, is proportional
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to the stress force there [2]. Such slow flow
problems are of considerable physical and mat-
hématical interest [4,6].

Integral Representation

Let us introduce the Green's tensor Gyk(x:y)
which satisfies Stokes equation every where in

the space bounded by ¥, except for x =y, and also
the condition

Gyk(x:y) | Tangenttat= © [Tangential component of
the corresponding viscous stress] on %,
2.1)

where x = ( X1, x2.x3), ¥ = (V1.y2.y3) and G is the
slip coefficient.

In unbounded fluid the Green's tensor is
the fundamental solution of the Stoke equations
termed Stokeslet [1] and is given by

W x.Y) = Ix yl —u_'x;ﬁ‘y"’. 2.2)
pi(x.y)= “—{’f’;—"”—la) (2.3)

where i is Kronecker's delta.

The associated stress tensor is

9 upe  duy

t"““—pfs“*“( dYi Yk

S (x—yi) (G- W) 0%~ Uk)
Ix— yI5

2.4)

Now we can split Gyk{x:y) in two parts

Gk (x : y) = upklx . y) + gyulx ; y). (2.5)

where gjk(x:y) satisfies Stokes equations and is

regular everywhere within 3. Also, for the cor-
responding stress, we write

Gyl : y) = tjalx . y) + guilx : y)- (2.6)

Now, in a manner similar to the derivation
of generalized Green's integral formula [4.5.6],
using (2.1) ant the no slip condition that uj has
a constant value Uj on S, we gel

uk(x)=—8—,1tpjsc‘yk(xzy)iﬂ(y)m(y)ds

8,,”[ bt (. Y (Y ) dS

t o ki v niy) ds

Bmf Gy ty (Y ) ru( Y )dS (27)

where x is a point of the region D bounded by X
and S, y is a surface point and ny(y) represents
unit normal drawn in D. The second integral in
(2.7) vanishes since it represents a double layer
potential with constant density [10] and, exploit-
ing the regularity of gjk(x : y). the third integral
can be shown to have the zero value. Next,
suppose that the characteristic length "a" of the
body is small and the minimum distance "h"
between a point of S and a point of ¥, is large.
Now, we know that the slow motion of a body is
determined by a distribution of Stokesleis and
higher order singularities [1]. Further, since the
velocity field due to a Stokeslet is of order 1 /
(distance) and due to the other singularities at
the most of order 1 / (distance)?. it is apparent
that, when h is large, the motion is primarily
determined by the Stokeslets and their image
distribution. Exploiting this together with the
slip boundary condition on 2 , an order analysis
reveals that when a is small and h large the last
integral is of Ofl / h? and so may be omitted.
Thus, (2.7) simplifies to

e ()= g | Gpe (63 ) @) ne s (2.8)

81!:;1

The above representation is of the same
type as the single layer formulation [10]. The
integral is seen to be a continuous function and

Rev. Téc. Ing. Univ. Zulia, Vol. 15, No. 3, 1992


http:Y].Y2.Y3

Movimiento lento de un cuerpo pequeno en un semi-espacio 149

so applying the boundary condition ug(x) = Uk on
S, we get the integral equation

1
U=~ o IS Gpe(x: ) fidS  (2.9)

where now x, y € S, and

{3 =1t () n (y) (2.10)
determines the stress vector,

Drag Force
The drag force on the body is given by

Fe=[_ta @) nwds=[_fcwds @)

In the case of infinite fluid the correspon-
ding drag force F ¢ may be expressed in terms of
the resistance tensor ®j; thus

F 7 = Uk Ok (3.2)

Now. using (2.5), equation (2. 9) may be
wrilten as

1

" Bmn Is gik (x: Y) [j (y)dS. (3.3)

If yo locates the centroid of the body then,
since it is of small linear dimensions, we have the
approximation

ik (5)) = gjk (Yo + Yoy = gik (Say) (3.4)

Substituting this in (3.3), we obtain

A |
Uer gt = | wecw s (3.9)

Remembering that in unbounded fluid
Gjklx:y) reduces to ujk(x.y). we see [5.10] that the
equation (3.5) represents the motion of the body
in unbounded fluid but with modified velocity

Uk + % gjk . Since fi(y) is the stress vector for

the case of bounded fluid, we may write by the
help of

Fj o) 4m
= e 6
Fi=|Uc+ By gjic] Pk (3.6)

First order approximation may be obtained
by replacing F) by Fj on the right hand side of
(3.6); thus

W o
Fi= U+ gﬂ}i Qﬁc] Dl (3.7

It is seen here that gjk is independent of the
form of the surface S. The principal axes of the
resistance of the body are defined so that. when
the body moves parallel to one of them in un-
bounded fluid. the force is in the direction of the
motion. If 1 represents a principal direction, then
we can derive from (3.7) the force in that direction
as

FT_ o
Fi=Fil 1+ 8_uIl'I'U|V giil (3.8)

IMlustration

A sphere moving parallel to a plane wall.
For a sphere of radius & moving in an infinite
mass of fluid parallel to x; direction with uniform
velocity U, we known that the force is given by

F{ =-6mu Ua (4.1)

In this case formula (3.8) gives

Fi=-6mulioc (1 -3 a g, (4.2)
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when the wall is taken along the x-axis.

Now the Green's function for the problem is
given by the image system of a Stokeslet, in a wall
with slip [2]. Thus, we have

1 (xi-yn> 6 T P
gn(x:y)=.§_( lRay” _6ys (x !;5) (3 + y3)
SAptatiy 31—y

1
25 |-—— +
R Bt s
3(x1-y1) (x3t+ys) K (xl—yl)2 (xatysy
+40’{———— +3ys s pc

_L ("3 + Y3 l’l_ S 3(xl = y‘)zl
s R R 2

(4.3)

LL_3(X1—sz
Bosle T B 15

where R= [ (x1 -y1) >+ (x2 - y2) * + (xa + ya) * |
and ¢ is the slip coefficient.
Neglecting terms of the 0 ( }%) the centroid

may be taken at (O0.0.h) and then we find that

3

gi =~ ah (4.4)

Substituting the above value in (4.2), we gel

F1 =—6nuUa (1 +

ol®

88
™ (4.5)

|

Thus, we see that with the neglect of terms
of O(1 / h2). the slip has no effect on the drag. It
may also be noted that since g% is independent
of the shape the result (3.8) may be employed to

write down the drag on any particle provided the
value of the drag for its motion in unbounded
fluid is known.

References

[1] Blake, J.R. A note on the image system of a
stokeslet in a no-slip boundary. Proc. Camb.
Phil. Soc.. Vol.10, 1971, pp. 303-310.

[2] Datta, S. Stokeslet in a half space with slip at
the wall. Ganita, Vol. 36, 1985, pp. 78-86.

[3] Fischer, T.M. Wall effects on the slow steady
molion of a particle in a viscous incompres-
sible fluid. Math. Meth. in Appl. Sci.. Vol. 8,
1986, pp.23-40.

[4] Happel, J. ant Brenner, H. Low Reynolds
Number Hydro-dynamics. Prentice-Hall, Inc.
(1965).

[5] Kanwal, - R.P. Linear Integral Equations.
Academic Press (1971)

[6] Ladyzhenskaya. O. A. The Mathematical
Theory of Viscous Incompressible Flow. Gor-
don and Breach (1969) .

[7] Lorentz, H. A. Abhandlungen uber Theoretis-
che Physik 1. Leipzig, Teubner (1907)

[8] O'Neill, M.E. A slow motion of viscous liquid
caused by a slowly moving solid sphere.
Mathematika, Vol. II, 1964, pp. 67-74.

[9] Williams., W.E. Boundary effects in Stokes
flow. J . Fluid Mech., Vol. 24, 1966, pp.285-
291.

[10]Youngmen. G.K and Acrivos, A. Stokes flow
past a particle of arbitrary shape: a numeri-
cal method of solution. J. Fluid Mech.. Vol.
69, 1975, pp. 377.

Recibido el 12 de Diciembre de 1989
En forma revisada el 16 de Junio de 1992.

Rev. Téc. Ing. Univ. Zulia, Vol. 15, No. 3, 1992



