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Abstract

I ‘ 1
I “ns paper we sl,mly Um sununa‘ﬂ‘l{y of certain sequernces op h)urlerYoung coeMcmnl_s of a
function of Wiener's class by Norland method, From which we deduce under what conditions a function
ol Wiener's class Is continuous.
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Sobre ciertas sucesiones de coeficientes de
Fourier-Young de una Funcion de Clase Wiener

Resumen

En este trabajo estudiamos la sumabilidad de clertas sucesiones de coeficientes de Fourier-Young
de una funcion de clase Wiener por el método Norland. A partir de esto se deduce bajo qué condiciones
una luncion de clase Wiener es continua.

Palabras claves : Sucesion, coelicientes de Fourier-Young, clase Wiener.

Introduction We note 5] thai

Let f be a real or complex valued 2rc-pertodice Vm € Ve, 11 S P Sp2 < o)
function defined on 0,27 and let Pe: 0 =1p< 1 <...
<ty = 21 be a partition ol [0.2x] such that the
norm

is a strict inclusion. Hence Wiener's class
Vp (1 € p < <9 Is a strictly larger class than the
class V) of functions of bounded variation in
P{Pe) = max |t, — t,-1| < &g, ordinary sense. The class Vy, was first Introduced

S by Wiener [6]. Then Young [7] proved the
following  theorem in connection with the
existence of  Riemann-Stieltjes infegral of a
function of Vp,.

where € is an arbitrary positive number. For 1 <
P < e, we defline p- th variation of [ by

\/'

Vi(f) = 1lim sup -}Xu(.:) — it )l-”|l Theorem A
=¥ ¢ =1
If an [ € Vp and g € Vg where p.g > 0.
where the supgmum has been taken with 1 1 .
: : =+ <> 1, have no common points of discontinu-
respect to all partitions of the type Pe of [0,2x]. P q
Now we define Wiener's class simply by ity. their Stieltjes integral

Vo = £ 1V (f) < o
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exists in the Riemann sense.

From Theorem A, the sequence defined by

4
k) = (27:)“[ &' Mgre, (k= 0,8,

exists forevery £ € Vp(l < p < «). We shall
A i

call (J(k)} the sequence of Fourler-Young

coefficients and the series

z“‘ :F (k) ex kX

will be called the Fourier-Young series of f.

In terms of Young [7]. a sequence [fi] of the
class V converges densely in [0.27] to a function
[ if fu(x) tends to [(x) for cach x of an everyhere
dense set in |0,2x].

And a sequence [[(x)} converges uniformly
Lo f(x) at. xo, il given an € > 0, there is an nand a
8 > 0, such that, for n > and for all x distant
less than & from xo. 1fn () - 1x) | <e.

Now we are able 1o state the following the-
orem due o Young [7].

Theorem B

Let |f4] , be a sequence of functions such
"=

that V() | Is uniformly bounded In n and
n =

p and let ¢ € Vq, where p.q > 0, ~I[;+ (l—l> 1.

Suppose that -‘J},}:_’ converges densely in [0,2x]
to a function I of Vj, and [, (x)};:l converges
uniformly at each point of discontinuity of {(x) in
10.2x]. Then
14 i
Lim J £ dg:J f dg
3o f {

There 1s also a well known theorem due to
Wicner [6]-

Theorem C

If T e Vp(l £p << Is continuous, then
Vy(f) = 0 for all g > p.

Let{pr_, be a sequence of real or complex

n
numbers such that Py, = 2k~ pk # 0. A sequence
0

o

'ﬂ:l is sald to be summable by Nérlund

method of summability defined by [py}, or simply
summable (N,p) if

1imM] (s) = lim B Z Di—k Sk
i it B K

A=

exists. The conditions for regularity are
(1) py = O(Pp) (n—oe) and

(ii) Z “]PiAi = Py) (n—es),

of which the latter 1s automaltically satisfied
when the sv.quvn('e.-’pn}::o 1s positive (cf. Bari [1])
p-12). We write Lthroughoult:

Apx = Px - P, A'Px = A(AT TBy) (rx>1)

with px =0 for k < 0.

The main atm of this paper is to study the

summability of the sequence fik) ("MIM) ol

Fourier-Young coefficlents of a function of
Wiener's class by Norlund method. This will en-
able us (o oblain a criterton, answering that
under what conditions, a function of Wiener's
class Is continuous. More prectsely. first we prove
the following theorem.

Theorem 1
If feVp(l < p<e) then the sequence

{ o) eik"};:o Is summable (N.p) to n' DX =
' {f(x+0) — f(x-0)} for every x € [0.2r] provided
that (N,p) Is regular and

n

(1) ¥ (n-k) |Apxl = O(Bu) (n—seo)

ne

(ii) 2 KlApyl = O(Py) (n—ee).
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where O means capital order O in ordinary sense.
Proof :

Consider

¥ (T (k) I‘DX'DHLf) e

o Z”‘
. R=0)

oot | e aney + 17 ()
0

where
hit) = £(t) - m' Z__) D(x)) g(t-x)) , (1)

are points of discontinuity of [ in

X0y, X 0 KR i vee
[0.2%] and

=t
glt) = '2—f010\t<21[

¢(0) = g(2m) = 0 and outside of [0.2x], g(t) is defined
by periodicity. It ts evident that h € Vp and is
continuous everywhere in [0.2n]. D(x) = ((x+0) -
f(x-0) denotes the Jump of I atl x. Hence we can
wrile

. %3
M Bkt = n_'J K (x-t)dh(t)+ m ' D(x) (2)
where

Ky(x—£t) = P’—‘i 2 P+ E‘:'("‘_)

It Is sullicient to show that the Integral on the
richt hand side of (2) tends (o zero as n—oes.
Conslder

J‘:g’tx;,(x-‘r,)l."lh(tt)—_J-"mm’;r J'j_.;_»l,a = I + I

Bul the integral

I Ki(x—t) dh(t)
|s=tfs 8

= sup Z Ky (x-ti) (h(ti) - h(ty 1))

where the supremum has been faken with
respeet to all partitions Pix - d =lo <Ly <ty ..<
tn = x+0 of [x-§, x+d8]. But we can write

N
Y Kolx-ti) {h(ti) - h(t:i1)) =
=]

2 E Ar (Ky) Ai(h) +

O<e<ikN

K. (x-8) [h{x+0) - h(x-0)]
where

Ai(h) = h(tj) - h(tij.y) and A (Ky) =
Ka(Ly) - Knlty-1).

Now using Holder's inequality (cf. Young [7]
p-254), we obtain for p,q > 0 satislying

l+~I—>l,
P

N
IZ Kn(x-ti) (h(ti) - h(ti.q)) | <

{1+Z Rt

Vi (Ky) Vg (h) + [K; (x-8) | Ih(x+8) - h{(x-3)|.

Since h s continuous, Vg(h) = 0 from Theorem C
and Vp(Ky) Is bounded, hence by the definttions
of V(K and Vg(h), we obtain

I, = |n J

ja=t|€ &

Kyx— t) dh(t) | < €

for a given arbitrary small positive . Now we
proceed to show that (VI,(K,JI Is uniformly
bounded in n. Since, for 0 =1 < ... I, = 2%,

K, (ti) = B, Z‘ Pk e iz

Py, z Di-x cos kt; +iPj E D=k sin kt,

b=

can be written Into real and imaginary parts ol
Kn(t). By using Abel's transformation on real part
of Ku(li), we can write

I

P:‘.; Z Bi-x
B Y Ap,,

cos kty =
Dilt)) + P 1 Bult:)

n
where Dyul(l) = Zk cos kt; denotes Dirichlet’s
=0

kernel. 1t will be sufficient to show that the real
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part of Ky (t) belongs to Vy, uniformly in n. Since
the real part of

[Kn(ti) - Ky{ti-1)] =

E‘-IEL;;AD.-A{D;:& ) + D;;(t“;)]

+ FipolDu(ts) + Dult, )]

And by using Mean Value Theorem, we can write
the real part of Ky(t) - Ku(ti-1) ts equal to

n

e
By Y Apnok DxdEi) (Ei-tiq) +

P oD x(&i) (E5-t5-1) (3)

where D'k(&) denotes derivative of Dg(t) at the
poinl & € (li-1.t). Hence (3) 1s majorised by

B Y klApi-x| | ti-t; (M € M(ti-ti))

where M is an absolute constant. Hence, for 1 <
P < e, the real part of

|

sup /‘lz‘: ‘Mt ) = Kl b= )| !- < 21 M,

and, therefore, the real part of Ky (1) belongs to Vi,
uniformly in n. Similarly, we can show that the
imaginary part of Ky(t) belongs to Vy, uniformly
in n. Henece (Vp(Ky)| ts uniformly bounded in n
and

1im Ku{t;) = 0 for all t; # 0 (mod 27)

o

IFurther hit) is continuous part of f, hence using
Young convergence theorem B, we oblain,

lin J Ku(x— £}y dh(t) = 0
e ™|l |5 8
which tmplies [z — 0 as n—e. This completes the
proof of theorem 1.

A Norlund method of summability (N,p)
which is regular and satisfies the conditions |
and 11 of Theorem 1 will be called an admissible
method. Hence we deduce the following theorem
from Theorem 1.

Theorem 2

L
For every ['€ Vp (1< p < 2), the [ollowings
are equivalent.

() fis continuous

(11) {|f(k)l2] Is summable (N,P) to zero by an
admissible method.

(141) [lf(k)lj is summable (N,P) to zero by an
admissible method.

Proof:

Suppose that f is continuous in [0,2n7)].
Henee D(x) = 0 for all x € [0.2x]. Since the convo-
lutlon of [ € Vy, , defined by

i

£ (% = £(x+t) AF(t),

exists only for 1 € p < 2 by Theorem A for every x
which does not belong to a countable set D of
numbers [x;), where [x)] are the points of
discontinuities of . We define for X' in D.

£ (x') = lim £ (x).
B U S

It Is easlly seen that * e Vy (1 £ p < 2) [rom
Theorem A and its Fourfer-Young series is

S o) 12e™, Since (cf. Zygmund |8] p.8-10).

F4.4

£ (%) = — fix+ty dh(t) +
2n 4,

2. " Fx+x) D(x,)

on L on j X

It follows that

£7(+0) - £ {-0) = 3

D ‘
2n ;:”I €5)

where summation Is taken over all the points of
discontinuity of f In [0,2n] and h Is continuous
part of [ defined In (1). Applying theorem 1 on 5
at x = 0, we oblain that {I_?[k)lz} is summable

(N.p) to —21—’(2’_:0 |D xpl® which s zero by
hypothesls.

Fence (1) = (1)

Rev. Téc. Ing. Untv. Zulla, Vol. 16, No. 3, 1993


http:numhr.rs

Sequences of Fourier-Young coefficlents

267

If {If(k]iz} is summable (N,p) to zero then by
Schwarz's inequality, we obtain that (If(k)l) Is
summable (N,p) to zero and hence {it) = (lil).

Further, if {lj"[k)l} Is summabz (N,p) to zero
then D(x) = 0 ¥ x € |0,27] by applying theorem 1.
Hence [ is continuous in [0,2x]. This completes
the proof of Theorem 2.

Theorem 2 extends Lo varlous theorems on
continuity to Wiener's class Vy including those
given by Wiener [6], Lozinskii[3], Matveev [4] (cf.
Bari [1] page 256) and Golubov [2].

We aL-:n Mu: L) remarl{ “'lal rn'm()llém Q !.l! Al
more (rue for l] 2 2. For we have the following

functions:

i ' ~ 1 I
f(x)z;:::%ﬁ; aglx) :zhzgln k ({{* fﬂ k]

(4)

IL Is easy to verily (ef. Zygmund [8] p.241-243)
that both series In (4) converges for all x. We also
note [8] that [(x) is a discontinues function
belonging to V) and g(x) belongs to Lipj 2 and
hence belongs to Vg We can compuie the
Fourier-Young c«_)cfl’lclcnls_?(k) = 6 (kl=1fork=
1.2.3,..and ?(O) =_6 (0) = 0. Flence we obtain two
functons fand g belonging to V(2 € p <=); one
is discontinues and other is continuous such
that f(k) = § (k) for k = 0,1.2.... . Hence Theorem
2 cannot be extended for p 2 2 In terms of
Fourier-Young coefliclents.

Applying Theorem 1 and Theorem 2, we can
prove the following theorem.

Theorem 3

Let (N,p) be an admissible Norlund method
of summability

WIf1<p<2, then the condition that {lif[k)l]
Is summable (N,p) to zero, Is necessary and
sufficient for [of Vp to be conlinuous.

(i) If p = 2, then the condition that Hj‘(k)l}
is summable (N, p) (o zero, remalns sufficient but
is no longer necessary for fof Vp, to be continuous.
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