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Abstract

In the present paper, regularity results for linear elliptic equations are presented, where a

coefficient has critical growth.
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Regularidad para un probleina eliptico

Resumen

En este trabajo se presenta un resultado de regularidad sobre una ecuacién lineal eliptica donde

un coeficiente tiene un crecimiento eritico.

Palabras claves: Regularidad, ecuacion eliptica.

Introduction

The main purpose of this paper is to give a
regularity result for a linear elliptic equation
where a coefficlent has critical growth. We con-
sider the boundary value problem

-Au(x) —qu=vy inQ
u(x) =0 ondQ (1)

Where A is the Laplacian operator, Q is
some open subset of R" such that the Sobolev

imbedding theorem applies, qe L"(Q) + LP(Q),
v e L2(Q) N L*(Q), and ligll” > A; where A; is the
first eigenvalue of —A.

The motivation for proving Theorem A
below came from the study of the problem

—Au(x) = g(\, u(x) ,x€ B,ue C%(B)
u>0 ,in B
u=0 , on oB

with gA,w= lul"u+A, where r= and

N23.
The main result for problem (1) is

4
N-2

Theorem A

Assume q € L7(Q) + LP(Q)), where

N
pig NS ey NS
1 L ifN=1

If ve LAQ) N L7Q) and ue HYQ) Is the

unique solution of (1), then u e 29@ LP(Q).

Theorem A 1s an extension of a theorem of
Brezis and Kato [2]. The proof is based on the
Sobolev imbedding theorem (see Adams [1]) and
uses some ldeas taken from [2]. Specifically, if

ue H(l,(Q) 1s the unique solution of (1), then we
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shall prove the existence of a sequence {u} which

converges weakly to u in H(',(Q). The Sobolev

imbedding theorem is then used to show that
M 1P P

wee IP(Q), implying that u e ngm .

Proof of Theorem A

Lemma 2.1

Let u e Hy@. If for k = 1,2,.. we let
ux = min(uk), then {ug converges weakly in
Hy@) to w

Proof. From the definition of wcwe see that
{u} and {Vuyd converges pointwise to u and Vu
respectively. On the other hand if ¢ € H(l)(Q), and
Ak ={xe Q:ux) <k}, then

[ Vi - vo=[vu- V¢<[I|Vu|2ﬂj|v(pt2]z

Q Ak

Nullpgdy NollH-

Thus by the dominating convergence theo-

rem, JVuk Vo > J Vu - V. This completes the
Q Q
proof.

Lemma 2.2,

Let ge L7(Q) + LP(Q) with

, andp>1,If N=2.

N

3 >
p=1{2 ,ifN23
1

IEN=1

Then for every € > 0, there exists a constant
Ae such that

J qiu? selgrad ulfs + aeluis, ¥ ue HA(@).
Q

Proof. Write g = q1 + g2 with g1 € L™(Q) and
g2 € LP(Q). Then for every k > 0 we have

J‘qlulzsllqlllL.‘llulli2+ I qglu12+k J ful?

Q [|qn|>k} [Itulsk}

< (ligull -+ k) iz + liga |

171 215k IIqui. :

= L.

~ |t

where LA -
p

In case N> 3 we find t = 2* where 2* Is the
2N
N-2

By the Sobolev imbedding theorem we have

Sobolev exponent, that Is 2%= ——

llull < C ligrad wullz, Vue Hy(Q).

When N=2we find 2< t<e and it is known
that

llull (< C (ligrad ulla + lullz) , Yue Hy(Q).

When N = 1 we find t = o and it is known
that

1
IIulIL. < C (llgrad ulILz + lluIILz) . Vue Hy(Q).

Therefore we reach the conclusion of
lemma 2.1 in all the cases by choosing k large

enough so that 13 "q2"LP(qul>k) <E€.

Now we come to the proof of Theorem A. We
have only to consider the case N23 (when
N<2,ue H(l)(Q) implies u eig?m LP(Y).

We truncate q by gx = min(q,k) and define
uk to be the unique solution of

k€ Hy(Q)
— Aug — qillc =y In Q

We shall prove that for every p € [2,%),
ux € LP(Q) and
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el < CoClhyll 2 + iyl - )

where Cp is independent of k, but it depends on
g through the use of lemma 2.2 for simplicity we

drop now the subscript k on wc and write

—Au— g = V. 3)

Set U = min(u,m) and let 2 < p < «; since
("' HyQ) we can multiply (3) by (un?" and
o[)(aln

-1 el o ' gt

0 Q {
That is

4p-1) £12 -1
T [ graet (ugya1® <yl gty +i‘;q(um)"

P

E "
<liyll p uumn;’,‘,‘ + €1l grad (um? uiz + 2l

By choosing € > 0 small enough (for exam-

ple € = g(_p_;_ll) we see that
p

) 2
J | grad (um)2 1% Cp(llwlip + l|u|{,,),
o)

were Cp is independent of k and m.

45
Using Sobolev's Inequality we see that
Ih;ll‘zzi.e < Cylyifly + ), (4)

D=
Thus if ue LP(Q) then u e LTE(Q) and

Hulfe < Cp( Iyl + lul) ).

I(Graling (he process from p & 2 we DL

ﬂnally that for every P € l2i°°?

S Gl o+ )

More precisely we have proved (2).
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