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Abstract

We present a simple isotopic generalization of the ordinary differential calculus, here called
isodifferential calculus, which is based on an axiom-preserving generalization of the unit with compatible
generalizations of fields, vector spaces and manifolds. The new calculus is applied to the isotopic lifting
of Newton's equations of motion. We show that the isotopic equations possess capabilities which are
absent for the conventional equations, such as: the representation of the actual nonspherical and
deformable shape of particles; the admission of nonlocal-integral forces; and the representation of
nonpotential (variationally non-self-adjoint) interactions via the unit of the theory.
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Levantamiento isotopico de la mecanica de
Newton

Resumen

Se presenta una generalizaciéon Isotopica simple del calculo diferencial ordinario, aqui llamado
calculo isodiferencial, el cual esta basado en la generalizaclon preservadora del axioma de la unidad con
generalizaciones compatibles de campos, espaclos vectoriales y variedades. El nuevo calculo es aplicado
al levantamlento Isotopico de las ecuaciones newtonlanas de movimiento. Se demuestra que las
ecuaclones Isotoplicas poseen capacidades que no estin presentes en las ecuaciones convencionales,
tales como: la representacion de la forma no esférica y deformable real de las particulas, la admisién

de fuerzas integrales no locales, y la representaciéon de interacciones sin potencia (variaclonalmente no
auto-adjuntas) mediante la unidad de la teoria.

Palabras claves: [sotopias, isounidades, Isocampos, Isoespacios, isoderivadas,

1. Background notions on isotopies.

The basic notion of this paper, that of isotopies,
is rather old. As Bruck {4] recalls, the notion can be
traced back Lo the early stages of set theory where two
Latin squares were said to be isotopically related when
they can be made to coincide via permutations. Since
Latin square can be interpreted as the multiplication
table of quasigroups, the isotopies propagated to

quasigroups and then to Jordan algebras (see, e.g.,
McCrimmon [11]). While at the Department of
Mathematics of Harvard University in the late 1970,
Santilli [14] iniziated comprehensive studies on the
isotopies of fields, veclor spaces, Lie's theory and other
methods. An exhaustive literature on isotopies up to
1984 can be found in bibliography [3] while subsequent
references can be found in the recent monograph by
Lohmus, Paal and Sorgsepp [10].
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This paper is written by a physicist to stimulate
rigorous mathematical studies on the isotopies of
differential calculus, here called isodifferential
calculus. These mathematical studies are warranted
because the new calculus implies simple, yet
unambiguous and intriguing isotopies of contemporary
analytic, algebraic and geometric theories which have
lately seen a variety of novel applications in nuclear
physics, particle physics, astrophysics, super-
conductivity and other fields [19,20l. Moreover, the
recent advances in isotopies have occurred in the
physical literature and they do not appear to have
propagated until now to the mathematical literature.

This first paper is devoted to the presentation of
the isocalculus, which is done here apparently for the
first time, although the generalized calculus is implicit
in other studies by this author [19,20], as we shall
indicated later on. In this Tirst paper we also recall only
those aspects of the isotopies which are essential for
rendering the study selfsufficient. The second paper in
this series is devoted to the isotopies of classical and
quantum mechanics, while the third paper presents the
isotopies of the underlying geometries. Due to the
emphasis on applications, our treatment is local, while
abstract, realization-free profiles are merely indicated.

We should mention for completeness that the
isotopies are particular cases of the so-called
genotopies introduced by Santilli {14], which are
nonlinear, nonlocal and nonhamiltonian maps, this time,
violating the original axioms in favor of covering
axloms (i.e, more general axioms admitling of the
original ones as particular cases). In turn, the genotopies
themselves are particular cases of the still broader
multivalued hypergeneralizations (see, e.g., Youglouklis’
recent monograph [24]). These more general
formulations are contemplated for study in subsequent
papers.

The main Idea of the isotopies studied by this
author [14,16] is the lifting of the trivial N-dimensional
unit | == diag. (1, 1, ..., 1) of a conventional theory into a
nowhere singular, symmetric, real-valued, positive-
definite and N-dimensional matrix1=Q0) =0 ="T"=
(P =(rh™’ 1j 1, 2 ... N, whose elements have a
smooth but otherwise arbitrary functional dependence
on the local coordinates x, their derivatives X, &, .., with
respect to an independent variable U and any needed
additional local quantity,

| (03 55 A I 1.y

The original theory is then reconstructed in such a way
to admit 1 as the new left and right unit. This requires
for consistency the lifting of lhe totality of the
mathematical structure of the original theory, including
fields, metric spaces, functional analysis, algebras,
groups, geomelries, etc. Since the new and old
structures “are indistinguishable at the abstract,
realization—free level by construction, the lifting is a
particular form of isotopy.

The fundamental isotopies are those of fields. Let
F = F(a,+x) be a field (hereon assumed to have
characteristic zero) with elements a, b, .., sum a + b,
multiplication axb :=ab, additive unit 0, multiplicative
unit I, and familiar propertiesa + 0 =0 + a = a, ax|l =
IXa = a, V a € F, and others. We have in particular: the
field R(n,+x) of real numbers n, the field Clc,+%) of
complex numbers c, and the field Qg,+) of quaternions
q.

Definition 1 [18]

An “isofield”F = F(a,+%) is a ring with elements
a = axl, called “isonumbers’, where a € F, and | is a
positive-definite element generally oulside F,
equipped with two operations (+, %), where + is the
conventional sum of F with conventional additive unit
0, and % is a new multiplication

axh:=axTxph, 1 =1 (1.2)

called “isomultiplication®, which is such that 1 s
the left and right unit of F,

1%a =3a%1 =2a,vacekf (1.3)

called “isounit”. Under these assumptions F is a field,

Le, it satisfies all properties of F in their isotopic
form for all 8, b, ¢ € F:

1. The set F is closed under addition, 3 + b e F,

2. The addition is commutative,a + b= b + 2,

3 The addition is associative;a + (b +¢)=@+ b+ ¢,

4. There is an element 0, called tadditive unit”, such
thata+0=0+a=a,

5.For each element a € F, there is an element - a € F,
called the “opposite of @, which is such that a +
-a) = o

6. The set F is closed under isomultiplication, 3%f € F,

7. The multiplication is generally non-isocommutive,
akb = bXa, but iseassociative,ax(bxc) = (axblke,
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8 The quantity | in the factorization 3 = aXl is the
“multiplicative isounit” of £ as per Eq.s(1.3)

9 For each element a € I, there is an element ale f,
called the “isoinverse’, which is such that 3G~ =
@M =1

10.The set F is closed under joint isomultiplication
and addition,

ax(b+c¢) ek (a+blxc ek (14

1. All elements a, b, ¢ € I verify the right and left
‘isodistributive laws”

x>

<,
5
When there exists a leasl positive isointeger p such
that the equation pxa = 0 admits solution for all
elements a € F, then Fis said lo have
“isocharacteristic p”. Otherwise, F is said to have
“isocharacteristic zero”.

ax(b+tc)=axb+axc (a+blxc=axc+b
(1

We therefore have the isofield R(d,+%) of isoreal
numbers n; the isofield C(¢,+%) of isocomplex
isonumbers ¢; and the isofield Q(q,+%) of
isoquaternions q (see [18] for the isooctonions). Since F
preserves by construction all axiomns of F, it is called an
isotope of F and the lifting F - F is called an
isotopy.All conventional operations dependent on the
multiplication on F are generalized on F(a,+%), thus
yielding isotopies of powers, quotients, square rools, etc.
These isotopic operations are however such that 1
preserves all the original axiomatic properties of I, i.e,
17 = 191«_# (n—times) = 1,1 =1,1/1 =1, etc. (see [18l for
details).

Note that the isotopy is restricted to iiic sum, as
indicatec oy the symbol F(a,+X), because the lifting of a
fieid into the form F(a,+X) inclusive of the lifting of the
sum, such as + = + = + K + with corresponding lifting
of the additive unit 0 = 0 = - K, K > 0, K € F, generally
implies the loss of the original axioms, such as the loss
of closure (1.4). Therefore, the lifting of the sum is not
an isotopy. Moreover, quantities which are
conventionally finite on Fla,+x) as well as on F(a,+x),
such a¢ the exponentiation on F, e = [ + a/ll + a%/21 +
orthat on F, e =1 + a/ll + axa/2 + . = {e¥ T = (e,
hecormne divergent under the liftings + =+ =+ K + 0 —~
0 = -K, K € F [18]. For this reason only the isotopies of

the multiplication are used in applications at this
writing [20].

Despite its simplicity, the lifting F = F has
significant implications in number theory itself. For
instance, real numbers which are convenlionally prime
(under the tacit assumption of the unit 1) are not
necessarily prime with respect to a different unit [18].
This illustrates that most of the properties and
theorems of the contemporary number theory are
dependent on the assumed unit and, as such, admit
intriguing tsotopies. Also, the isotopies permil the
conception of a new generation of cryptograms which
are expected to be difficult to break because of the
availability of an infinite number of different units
which are not admitted by the conventional number
theory.

The notion of isonumbers was presented,
apparently for the first time, by this author at the
conference Differential Geometric Methods in
Mathematical Physics, held al the University of
Clausthal, Germany, in 1980. The first mathematical
treatment appeared in ref. [12] of 1982. A systematic
study is available in above quoted ref. [18], while
additional studies and applicalions are presented in
monographs [19,201.

The mathematical and physically most important
implication of isofields is that they imply, for evident
consistency, corresponding isotopies of ali quantities
delined over conventional fields. Let E(x,8,R) be an N-
dimensional Euclidean space, with local chart x = (x¥), k
=1, 2, .., N, N-dimensional metric 8 = diag. (1, 1, .., 1)
and invariant separation between two points x, y € L,

(x-y2:=(x'-y")8 (x-y) € Rin+x), (1.7)

over the reals R(n,+x), where the convention on the suim
of repeated indices is assumed hereon .

Definition 2 [16]

An “isoeuclidean space” E(x,8R) is an N -
dimensional metric space defined over an isoreal
isofield Rin,+%) with an NxN—-dimensional isounit 1,
equipped with the “isometric”

8=(8,Q=Tx5, 1=11 (1.8)
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where 8 is the conventional Euclidean metric, local

chart in contravariant and covariant forms

D K =By X =Ty ey x, x* € E;
(1.9)

and “isoseparation” among two points X, y € £

(x-y R .= [(x-908, (X -9)]1T € F

{1.10)
The “isoeuclidean geomelry” is the geometry of the
isoeuclidean spaces.

1j

The primary property of the lifting E(x,8R) —
E(x,8,R) is, again, the preservation of all original
geometric axioms, thus characterizing an isotopy. In
actuality, E(x,8,R) and E(x,8,R) coincide atl the abstract
level by construction for all positive-definite isounits 1
(but not so for isounits of different topology [26). This
is due to the coistruction of the isospaces via the
deformation of the melric & into the isometric 8 = T8
while jointly the original unit | is deformed in the
amount inverse of the deformation of & 1 = T7\ This
mechanism then ensures the preservation of all original
geomeltric properties. In particular, since the original
space E is flat (with respect to the unit 1), the
corresponding isospace E is isoflal that is, it verifies
the axiom of flatness in isospace (with respect to the
isounit 1). Similar results are obtained for the isotopies
of the Minkowski, Riemannian, Finslerian and other
spaces (see [19] for brevily). In particular, an originally
curved space rermains curved under isotopies.

Note that the coordinates of E and E coincide in
their contravariant form, X = xX but not in their
covariant form, X, ¥ x,. Because of the latter
occurrence, the symbol x will be used for the
coordinates of conventional spaces, while the symbol X
will be used for the coordinates of isospaces. When
writing 8(x, ..) we refer to the projection of the
isomelric & in the original space.

Despite its simplicily, the lifting E(x,8,R) = EX5,R)
also has significant implications. In fact, the functional
dependence of the isounit | remains unrestricted under
isotopies. The isometric & can therefore depend on the
local coordinates x as well as their derivatives x, X, ..
and any needed additional variable, 8 = &(x, %, ¥, ..). The
isoseparation (1.10) is therefore the most general
possible integro—differential separation with signature
(+, +, +).

The above occurrence permits the geometrically
nontrivial result according to which a metric space
can be rlat under an arbitrary I unctional dependence
of the isometric. The understanding is that the
projection of E(x,8,R) into the original space E(x,8R) is
curved. Note that Riemannian metrics g(x) are a
particular case of the broader isoeuclidean isometric
8(x, X, % ..). This indicates that the N-dimensional
Riemannian space .R(x,g,R) over the reals can be
reinterpreted as the isospace E(x3R), 8 = glx), over the
isoreals via the factorization g{x) = T(x)8. The
assumption of the isounit 1 = T"! then eliminales the
Riemannian curvature in isospace with intriguing
physical applications in gravitation [20].

Isogeometries have novel properties which do not
appear to have propagated as yet into the malhematical
literature. For instance, the conventional trigonometry
on the two-dimensional Euclidean space E(x8R), 86 =
diag. (1, 1) (Gauss plane) is lost under lifting to a two-
dimensional Riemannian space #(x,g(x),R), but
trigonometry can be reformulated in the two-
dimensional isospace E(x8(x,%,%..)R) resulting in the so-
called isotrigonomelry (see [19], App. 6.A, or brevity).
An inlriguing application is the formulation of the
Pythagorean theorem for a triangle with curved sides
(because for each given such Iriangle, lhere exisls an
isotopy such Lhat its image in isospace is an ordinary
triangle with rectilinear sides).

Similarly, all infinitely possible spheroidal
ellipsoids in three-dimensional Euclidean space x%/a® +
y2/b? + 7%/c? = | € R(n,+%), a, b, ¢, # 0, are unified by the
perfect sphere in isospace called isosphere

, M=TerR+%, (1)

1=diag (a®,b?%c?), T = diag (a2 b2 c?) (111D

In fact, under isotopies the semiaxes (1, 1, 1) of Lhe
original perfect sphere are deformed into Lhe values (a2,
b% c2), but the corresponding units (+1, +1, +1) are
deformed of the inverse amounts (a2, b2 ¢™2), thus
preserving the perfect spheridicitly in isospace. When
the conditions of positive-definileness and non-
singularity of the isounit are relaxed, the isosphere
unifies all possible compact and noncompact quadrics
and cones in three-dimension. The use of yet more
general isounits then yields new geometric notions, such
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as an isosphere whose isounit is singular or a
distribution.

The notions of isoeuclidean, isominkowskian and
isoriemannian spaces over isofields were introduced by
this author in paper [16] of 1983, studied in various
memoirs, and presented in a comprehensive way in

monograph [19], including the isotopies of the
Minkowskian, Riemannian and other geometries.

The notion of isocontinuity on an isospace was
first studied by Kadeisvili [8] and resulted to be easily
reducible to that of conventional continuity because the
isomodulus ['T(x) [ of a function T(x) on E(x,3,R) over
R(n,+ %) is given by the conventional modulus | (%) |
multiplied by the positive—definite isounit 1,

TR ] = TR [x1 >0, (1.12)

As an illustration, an infinite sequence T, T,, ... is said
to be strongly isoconvergent to T when

Limy o[ T, - T[] =0, (1.13)

while the isocauchy condition can then be expressed
by

[ T - T <8=8x1, (1.14)

where & is real and m and n are greater than a suitably
chosen N(8). The isotopies of other notions of continuity,
limits, series, elc. can be easily constructed [26]. Note
that functions which are conventionally continuous are
also isocontinuous. Similarly, a series which Is strongly
convergent is also strongly isoconvergent.

However, a series which is strongly isoconvergeril
is not necessarily strongly convergent (ref. [19], p. 271).
As a resull, a series which is conventionally divergent
can be turned into a convergen! form under a suilable
isotopy. This mathematically trivial properly has
rather important physical applications, eg., for the first
construction of a theory of strong interactions with
convergent perturbative expansions [271.

The notion of an N-dimensional isomanifold was
first studied by Tsagas and Sourlas [23,24] In this paper
we use the following simplest possible realization of
isomanifolds. Since an NxN-dimensional isounit is
positive—definite, it can always be diagonalized into the
form

1 = diag (b2 b2 ., by?)>0, b >0, (1.15)

Consider then N isoreal isofields R, (A,+%) each
characterized by the isounit 1, = b, "2 with (ordered)
Cartesian product

RN = R]szx...xRN. (|l6]

since R, ~ R, it is evident that RN ~ R™, where R" is the
Cartesian product of N conventional fields R(n,+x). But
the total unit of RN is expression (1.15). Therefore, one
can introduce a topology on RN via the simple isotopy
of the conventional topology on RN

T = {0, RN B}, (.17)
where B, represents the subset of R" defined by

B = (P=(a},2y..2,)70;<8,3,..,28,<
<m,n,,m,a€R}. (1.18)

As one can see, the above lopology coincides
everywhere with the conventional topology T of R"
except at the isounit 1. In particular, T is everywhere
local-differential, except at 1 which can incorporate
integral terms. In this sense T is called an isotopology
or an integro—differential topology.

Definition 3 [23]

A “topological isospace” TRMN is the isospace RN
equipped with the isotopology T. A “'Carlesian
isomanifold” M(RY) is the topological isospace (R
equipped with a veclor structure, an afline structure
and the mapping

T.R" > R, t.2a - T@=a Vvaceh. (1.18)
An “isoeuclidean isomanifold” ME(x,8.R)) occurs when

the N-dimensional isospace E Is realized as the
Cartesian product

E(xBR) ~ R xRyx . xRy, (1.19)

and equipped wilh the isotopology T with isounit
(1.15).

The extension of the above deflinition to
nondiagonal isounits 1 can be trivially achieved, e.g., by
assuming that the individual isounits 1, are positive-
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deflinite NxN-dimensional nondiagonal matrices such to
yield the assumed total unit 1 via the ordered Cartesian
product

1= %0, . %]y, (1.20)

For all additional aspects of isomanifolds and
related topological properties we refer the interested
reader to Tsagas and Sourlas [23,24]. It should be noted
that their study is referred to M(RN), rather than to
M(R™) because of Lhe use of the conventional lopology
T (i.e. a topology with the conventional NxN-
dimensional unit 1). The extension to M(E) with the
isotopology T is introduced here apparently for the first
time.

The above notions on isotopies are sufficient for
the limiled objeclives of this paper. In regard to
addilional isotopies, we merely mention that the Lie—
isotopic theory submitled by this author [14,16,19 and
today called Lie-Santilit isotheory (see monographs
(27,10,21] or review paper [9] and literature quoted
therein). In essence, Lie’s theory in ils contemporary
formulation (on conventional spaces over conventional
fields) is linear, local and canonical and, as such, it
possesses limitations in its applications. The isotopies of
Lie’s theory are the most general possible nonlinear,
nonlocal and noncanonical maps capable of recon-
structing linearity, locality and canonicily when
formulated 1n isospaces over isofields. As such, the
isotopies imply a considerable broadening of Lthe
applications of the conventional Lie theory while
preserving ils axioms al the abstract level.

The isotopies of functional analysis, called
isofunctional analysis, were introduced by Kadeisvili
[8], who also introduced a classification of isounits into
five topologically different classes, today called
Kadeisvili’s classification. This paper is devoled to the
isotopies of Kadeisvili's Class I, i.e., those wilh a well
behaved and positive-definite isounits, the isotopies of
Class Il occur when Lhe isounils satisfy the same
conditions excepl that they are negative-definile; the
isotopies ¢l Class Iil are the union of Classes | and I1;
those of Class IV include all preceding Classes plus
singular isounits; and those of Class V include all
preceding ones plus isounilts of unrestricted
characleristics, such as step-funclions, distributions,
lattices, elc.

Kadeisvili's classification is significant because it
illustrates the broad character of the isotopies. For

instance, Lie’s theory is unique (because referred Lo the
single unit 1), while the Lie=Santilli isotheory admils five
topologically distinct classes (because based on five
distinct isounits). It should be stressed thal, despite all
the studies conducted to date, the isotopies remain
vastly unexplored at this writing. In fact, only the
isotopies of Class I, Il and 1il have been preliminarily
studied until now, while those of Classes IV and V have

remained essentially unexplored.

Nole that this paper is formulated for isotopies of
Class I, but its content can be readily extended to those
of Classes Il and 111, although the extension Lo Classes IV
and V require specific studies.

EXAMPLES. Some specific examples of isounits
used in ref. [20] for various applications may be of
assistance for mathematicians in understanding the
physical needs and identifying the ensuing
mathemalical requirements. One of the simplest
possible applications of Lhe isotopies is Lhe
representation of nonspherical shapes of particles and
Ltheir deformations due to external forces or collisions.
For the simplest possible case of spheroidal ellipsoids in
three dimension, the isounit is given by

1 = diag. (n,;"2, n,2 ny2), (1.21)

where the semiaxes n,2 are sufficiently well behaved,
real valued and positive—-definite functions of local
quantities, such as the intensily of external fields, the
local pressure, etc.

The next simplest possible example is the
representation of syslems which are open-
nonconservative because of exchanges of physical
quantities with an external system. In this case the
isounit is a well behaved function of local quantities
admitting of the value | as a particular case, e.g.,
L N (1.22)
Isounits of this type permit the representation of
continuously decaying angular momenta; particles
moving within resistive media under nonhamiltonian
but local-differential forces (see later on); the growth of
sea shells; and other nonconservative systems.

The next class of isounits needed in applications is
of nonlocal-integral type, that is, dependent on an
integral over a surface or a volume. An illustration is
given by the two electrons of the Cooper pair in
superconductivily which experience an allractive
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interaction against their repulsive Coulomb force. The
use of the quantum mechanical Coulomb law wilh
conventional unit I = diag. (1, I, 1) leads to repulsion. On
the contrary, Animalu [1] has shown that the following
isounit

J % 40 ¢,
1=¢e =

ag. (1,1, 1), (1.23)
permits a quantitative interpretation of the attraction
among the two identical electrons in a way conform
with experimental evidence, where ¢T and ¢ are Lhe
wavefunctions of the two electrons with related spin
orientation { and |. The exponent of (1.23) then
illustrates the type of nonlocality needed for
applications. Note that when the overlapping of the two
wavepackets ¢, and ¢, is no longer appreciable, the
integral in the exponent of isounit (1.23) is ignorable and
1 recovers the conventional unit I.

In general, the isounil used in application is a
positive—define malrix with the dimension of the used
carrier space (two-, three- and four-dimension for
problems in the plane, space and space-time,
respectively) which is generally nondiagonal whose
elermments have a local-differential as well as nonlocal
integral dependence on local physical quantities.

Remark. In the conventional Euclidean space
E(x,8,R) the unit of the field R, which is the trivial
number +1, is different than the unit of the space,
which is the unit matrix | = diag. (1, 1, 1), although the
field could be trivially reformulated to admit the latter
unit. Under isotopies the isounit of all mathematical
Structures must be the same. Therefore, in the
ispeuclidean spaces E(x,8,R) the isounit 1 of the isofield R
coincides with the isounit of the isospace.

2. Isodifferential calculus on isomanifolds.

Let E(x,8R) be the ordinary N-dimensional
Euclidean space with local coordinates x = {x¥}, k = 1, 2,
-+ N, and metric & = diag. (1, 1, 1) over the reals R(n,+x).
Let E(x8,R) be its isotopic image with local coordinates X
= (x*} and isometric 8 =18 over the isoreals R(f,+%). Let
the isounil be given by the NxXN nowhere singular,
symmetric, real-valued and positive-definite matrix1 =
) =0a)=1"=(r)"=(1)" whose elements have a
smooth but otherwise arbitrary functional dependence
on the local coordinates, their derivatives with respect
to an independent variable and any needed additional

quantity, 1 =1(x,..). The following properties then hold
from Definition 2:

Xk = Xk X = X = Ns %= T8 x =
= ' x, x =8| . (2.1a)
WK 1 = $Tis M o= SRR m KL = % %K
X8 = XTI, X™ = X8k = ¥ ¥ = X &,

=@ 1Y, (2.1b)

'x, = x, xi,

X8, x =x87x = x'x

81 =1 (8, .
(2.1¢)

Let MIE(x,5,R)] be an isomanifold on B as per
Definition 3 hereon referred as M[E). The
isodifferential calculus on M(E) can be defined as an
isotopic lifting of the conventional differential calculus
on M(E), that is, a lifting based on the generalization of
the unit 1 of M(E) into the isounit 1 of M(£), under the
condition of preserving the original axioms and
properties of the ordinary differential calculus,
including the condition of the invariance of the isounit
(see below).

Definition 4

The “first-order isodifferentials” of the
contravariant and covariant coordinates X* and %,
on M(E) are given by

axk =1k .Jdxt, d% = Tx .) dx, (2.2)

where the expressions Ax* and dx, are defined on
M(E) while the corresponding expressions 1* dx' and
T 'dx, are the projections on M(E). Let T(x) be a
sufTiciently smooth isofunction on a closed domain
D(x*) of contravariant coordinates %* on M(E). Then
the “isoderivative” at a point ak € (X¥) is given by

- aTx) t a f(x)
@)= 3%k gk = 3k = T ax Ik =3 -
@k + axk) - 1@k ;
=Lm, , ,——m—m——, 2.3)
axkod axk

where use of Kadeisvili’s [12] notions of isocontinuity,
isolimits and isoconvergence Is assumed,dt(X)/dxk is
computed on M(E) and T,'af(x)/ax' is the projection in
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M(E). The “isoderivative” of a smooth isofunction t(x)
of the covariant variable x, at the point a, € DIX,) is
given by

aTx) 3 1(x)
(@) = PP . =
. 3;(k Xk = g aXl Xg = dg
M3, +ax,) - TG,
Limy, , ———————— 2.4
Kk ax,

The above definition and the axiom-preserving
character of the isotopies then permit the lifting of the
various aspects of the conventional differential
calculus. We here mention for brevity the following
1sotopies: the isodifferentials of an isofunction of
contravariant {(covariant) coordinates X* (k) on E(x,5,R)
are defined via the isoderivatives according to the
respective rules

of of
& Miheoptray, = —— X =Ty —— 1¥ dx! = df(x) (25a)
axk ax!
ot af
A Mxhegyyr, = — Ok =1 —— T\J dx, = df(x);(25b)
Ay ax;

an iteration of the notion of isoderivative leads to the
second-order isoderivatives (no sums on k)

32 T(x) 32 1(x) 92 T(x)
=T —., =
3 xk? ax'ox! A x,2
8% flx)
=%, 18 (2.6)

and similariy for isoderivatives of higher order; the
1solaplacian on E(x,8R) is given by

A =0, 0%=1088 =283 =12355.73,
3, = /XX, 9, = a/ox, etc. 2.7

and and results to be different than the corresponding
expression on a Riemannian space R(x.g,R) with metric
g) =8, a=8"253"2800

A few examples are in order. First note the

following properlies derived from definitions (2.3) and
(2.4),

A% /3% = 8, O /3% = B}, /=T

ox'/ ¥ = 1',. (2.8)

Next, we have the simple isoderivatives

3 (x, xK) 3 (xB,x) 3 (x's;x
= =T/ = Tiaxl=2%
£ ax’ ax!
(2.9a)
3 In %) 3 In lx) LI R
= ! = ) (2.9p)

XK ax! ) Xk
and similarly for other cases.

For completeness we mention the (indefinite)
isointegration which, when defined as the inverse of
the isodifferential, is given by

[a = [1rax = [ax = x. (2.10)

namely, [* = f’i“. Definite isointegrals are formulated
accordingly.

The above basic notions are sufficient for our
needs at this time. The class of isodilferentiable
isofunctions of order m will be indicated €™
Systematic studies on the isotopies of the various
theorems of the conventional calculus (see, e.g., [32]) will
be studied elsewhere

Remark 1. The isodifferential, isoderivative and
isodifferentiation verify the condition of preserving the
basic isounit 1. Mathematically, this condition is
necessary to prevent that a set of isofunctions T(x), g(x),
..., on E(x,8,R) over the isofield R(n,+X) with isounil | are
mapped under isoderivative into a set of isofunctions
t1(x), g(x), ..., defined over a different field because of
the alteration of the isounit. Physically, the condition is
also necessary because the unit is a pre-requisite for
measurements. The lack of conservalion of the unit
therefore imphes the lack of consistent physical
applications.

As an example, the following alternative defmition
of the isodifferential

Ak = d (1 x) =[(a, 1%, ) x + 151 dx' = Wk ax,
(211
would imply the alteration of the isounit, 1 = W = 1,
thus being mathematically and physically unacceptable.
Neverlheiess, when using isoderivatives on
independent isomanifolds, say, isoderivatives on
coordinaltes and time, the above rule does not apply and
we have
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a9 T %) =3[9, T4, %1 = 3 ITM, x )8, i, 0 |.
(2.12)

Additional properties of the isodifferential calculus will
be identified during the course ol our analysis.
Remark 2. The conventional differential
calculus is local-differential on M(E). The isodifferential
calculus is local-differential on M(E) but, when
projected on M(E), it becomes integro-differential
because it incorporales integral terms in the isounit.
Remark 3. A representative application of the
conventional differential calculus is the charac-
terization of the equations of motion of a satellite in a
stalionary orbil in emply Space. A representative
application of the isodifferential calculus is the
characterization of the equations of motion of the same
salellite, this time, during re-entry in our atmosphere.
In the former case the actual shape and dimension of
the satellite do not affect its trajectory. Therefore, the
salellite can be well approximaled as a massive point,
according to Galilei’s [5] original conception, yielding a
local-differential problem. In the latter case the actual
shape and dimension of the satellite directly affects its
trajectory because two satellites with all the same initial
re-entry data of mass, speed, etc. but different shapes
and dimensions have different re-entry trajectories. In
this latler case the Galilean approximation of the
satellite into @ massive point is no longer applicable, and
we have an integro-differential problem, that is, a
problem with conventional local-differential center-
of-mass trajectories x(t) plus additional corrective
terms with the structure of surface integrals
represenling the contribution of the shape and
dimension of the satellite. The notion of integro-
differential topology has been conceived by this author
[19]in an attemnpt to characterize the latter systems.

3. Isotopic lifting of Newtonian mechanics.

Newton’s equations have remained essentially
unchanged since their formulation in 1687 [13]. Their
re-inspection is now warranted because classical
Hamiltonian mechanics has been constructed to
represent Newlon’s equations and, in turn, quantum
mechanics has been constructed as an operator image
of Hamiltonian mechanics. The applicability of these
mechanics is essenlially restricted to local-differential
and potential syslems, while the advancement of

knowledge in various disciplines is requesting the
treatment of nonlocal-integral and nonpotential
systems. It then follows that a possible broadening of
contemporary dynamics must originate from its
foundations, Newton's equations.

In this section we introduce, apparently for the
first time, the nonlinear, nonlocal and nonhamiltonian
isotopies of Newton's equations as characterized by the
isodifferential calculus. The isotopies have been selected
over a variety of other possibilities because of their
axiom-preserving character as well as of the
consequential broadening of classical and quantum
mechanics outlined in subsequent sections.

The contemporary formulation of Newton’s
equations requires the tensorial space S(tx,v) =
E(t)xE(x,5,R)¥E{v,8,R) where E(t) is the one-dimensional
space represénting time t, E(x,8,R) is the conventional
three-dimensional Euclidean space with Jocal
trajectories x(t) = {x¥} = {x, y, 7} and E(v,5,R) is the tangent
space TE which, at this Newtonian level, can be
considered as an independént space representing the
contravariant velocities v = {vk} = dx¥/dt. Newton’s
equations for a lest body of mass m = const. (% 0)
moving within a resistive medium (eg., our atmosphere)
can then be written

mdv, /dt - FSA(L x, v) - FRA QL x, v) =0,
k = ,2,3(=xy,12 , (3.1

where SA (NSA) stands for variational self-adjointness
(variational non-self-adjointness), i.e.. the verification
(violation) of the necessary and sufficient conditions for
the existence of a potential U(t, x, v) originally due to
Helmholtz [6] (see monograph [15] for historical notes
and systematic studies). It should be recalled that in
Newtonian mechanics the potential U(t, x, v) must be
linear in the velocities to avoid a redefinition of the
mass,

ult, x, v) = U, x) vk + UL, x) . (3.2)

£q.5(3.1) can then be written

dvy d aul x v a ult, x, v)
(e - —
dt dt avk axk

NSA
- FNSA(L, x, V) } =

au, X

m— - — —_  +

{ dvy UL, x) dvs
dt s dt axk
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: NSA
- FNSA(L, x, V) } =0, (33)

namely, they are not in general derivable from
Lagrange's [14] or Hamilton's [8] equations in the local
chart {t, x, v}, as well known [20,21] (see tater on for
coordinate transforms). The extension to systems of n
particles with masses m, (# 0) is straighforward and will
be ignored for brevity.

The represenlalion space of the desired isotopic
image of Newlon’s equations is given by the Kronecker
product of isospaces 8(,%,V) = EQXERXS,RIXEWV,BR) with
total isounit 1, = 1% x 1 x 1, where 1°, = (T, is the
(one-dimensional) time isounit, 1 = (%) = (T,)7" is the
(three-dimensional) space isounit, and the isounits of
isospaces E(X3.R) and E{V,R) have bee, assumed Lo
coincide for simplicity. For'clarity, we continue to
differentiate the isotime 1, isocoorcinates %¥t) and
isovelocities v¥(U) from Lhe original respective
quantities t, Xk and vk, with the following relationships
in addition to (2.1)

1=1, vk

1k

N Tl N

= Ty, # vy = 8, x\ 3.4

Definition 5

The isotopic lifting of Newton’s equations (3.3) in
isospace S(,xv), here called “isotopic Newlon
equations”, are given Dy

av, a a0, % v
FAE%Y) = m— - — — 4+
dt dt ER%
30, %, v)
o — =
G
v, WA X A& 0NN
= H— - — —+ — =0
a ax A RS
. (3.5a)
ot % ) =04 0k +0 0%, (350)

where we have used properties (2.7), m = const (= 0) is
the “isotopic mass”, that is, the image of the Newltonian
mass in isospace and one should note the preservation
of the linearity of isopotential (3.5b) in V¥.

We are now equipped to prove the following:

Theorem 1

All possible suffictently smooth, regular, but
nonlinear, nonlocal-integral and variationally non-
self-adjoint Newton’s equations (3.3) always admit in a
neighborhood D(S) of a point (1, x, v) the
representation in terms of the isotopic Newlon’s
equations (3.5)

av, d a0k, x v a0, x, v)
m-— - — + — =
dl dat ER% LR
o dv aulL X de AU x
=’T‘k'{m——————+ —
, dt e dt ax’
- PSAfa v)} =0. (3.6)

Proof. When projected in the original space Sit,
X, v), Eq.s (3.5) can be writlen

d(Ttv) d a0, %, v)
mtl——m - P— T — +
at dt V!
IaO(t, %, V)
+ K =
ax
dv, a0, x)
=mtet)— -T°h! — v +
dt ox®
a0, x) dt!
P+ MmPo——v,=0 (37)
3 x! dt

Sufficient conditions for identities (3.6) are then then
given by

mT, dv,/dt = mdv,/dt, (3.8a)
a0 t, x) aut, x)
T.° VS = ve, (3.80)
axs A e
a0, (t, x) UL, x)
= , (3.8¢)
3 x! 3 x'
diKl, X, )
Mt ———— v, = =T ¥4 x v) . (38d)
dt
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which, under the assumed continuily and regularity

conditions (see [20] for delails) always admits a solution
in the unknown quantities m, T.°, T, 0, and O, for
given equations (3.3). In fact, system (3.8) is
overdetermined and the following solution exists for
diagonal space isounit and constant time isounil,

1, =8\ gk 19, = constant > 0, (39)

for which

mTL = m, Ot =15 U, ), O, %) = uft, %),
(3.10a)

fl,x,v) = -m 'f Lt FNSAL(L, X, v) 7 vy, (3.10b)
o

where there are no repeated indices, m is conslant and
the functions f, are computed from Eq.s (3.10b). g.e.d.

The primary motivations for the submission of
the isotopic Newlon’s equatlions are expressed by the
following properties with self—evident proofs.

Corollary 1.A

The isotopic Newlon equations permit a
representation of the actual nonspherical shape of the
body considered and of its possible deformations via
the generalized unit (or isotopic element) of the
theory.

Recall that Newton's [13] equations were based on
the Galilean [5] approximate the body considered as a
massive point. The point-like representation of particles
then implied only action-al-a-distance, potential
inleractions with consequential analytic representations
via Hamilton’s equations as weli as under symplectic
map into quantum mechanical formulations. A
representation of the extended character of particles is
reached in second quantization via the form factors.
However, this representation is restricted to spherical
shapes from the fundamental symmetry of quantum
mechanics, the rotational symmetry. Moreover, the
latter symmelry is known to be a symmetry of rigid
bodies. Form factors cannot therefore represent the
deformations of particles under sufficiently intense
external interactions which is studied via other rather
complicated procedures.

A first motivation for the studies presented in this

paper is to introduce a representation of aclual

nonspherical and deformable shapes of particles al the
primitive Newtonian level, which then persists under
classical analytic representations as well as under
maps to first quantization. The isotopic Newton
equations do indeed achieve these objectives by setting
the foundations for possible new advances in classical
and quanturn physics. The objective is achieved via the
new degrees of freedom of the generalized unit of the
theory which are evidently absent in the conventional
Newtonian, classical and quantum formulations.

As a simple case, suppose thal the body considered
is a rigid spheroidal ellipsoid with semiaxes n;2, n,% n,?
= conslants. Such a shape is directly represented by the

isotopic element of the theory in the simple diagonal
form (1.21), i.e,

T

diag. (n,"2,n,"%, ny2), n, = const> 0,

—
I

K28 1=, (3.11)

The representation of the shape in isospace 3(t, %, V) is
then embedded in the isoderivatives of the isolopic
Newton equalions and, when projected in the
conventional space S(t, x, v) can be writlen

dv, auft, x)
dt 3 xS ax!

UL, x)
=0,

(3.12)
namely, the shape terms T,'are admitted as factors.
Mote that the representation of shape occurs only
in isospace because, when projected in the
conventional Euclidean space, the shape lerms cancel
out by recovering the conventional point-like
character of Newloir's equations.This illustrates the
necessity of the isotopy for the representation of shape.
Moreover, the nonspherical character of lthe shape
emerges only in the projection in ordinary spaces,
because all deformed spheres in ordinary spaces are
mapped into the perfect isosphere in isospace (Sect. 1),
x2 = (x'n2x! + x2n2x2 4+ Py ?2x3) 1 e RHX) .
(3.13)
The representation of shapes more complex than
the spheroidal ellipsoids is possible with non-diagonal
isounits. The representation of the deformations of the
original shape due tc motion within resistive media or
other reasons, can be achieved via a suitable functional
dependence of the T,' terms in velocities, pressure, elc.
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(see [19,20] for various applications in classical and
quantum mechanics).

Corollary 1.B
The isotopic Newton equations permit a novel
representation of variationally non-self-adjoint forces

via the isometric of the underlying geometry,
according to the rules

mdv /dt - A v = W ma by, Zdt, (14

while leaving unchanged the representation of
conventional self-adjoint forces (except for the
constant factor T, of Uy).

In fact, the non-self-adjoint forces are embedded
in the covariant coordinates in isospace v, = T,Jv},
where the v, are the covariant coordinates in
conventional space. The novelly therefore lies on the
fact that non-self-adjoint forces are represented by the
isogeometry itsell, thus providing another motivation
for the isotopies.

The simplicity of representation (3.14) should be
kept in mind and compared to the complexity of the
conventional solution of the inverse problem of
Newtonian mechanics [19,20], i.e,, the representation of
non-self-adjoint systems via a Lagrangian or a
Hamiltonian. Moreover, under the assumed conditions,
the latter exists in the fixed coordinates (1, x, v) of the
observer only for a restricted class called
nonessentially nonselfadjoint [loc. cit.], while isore-
presentation (3.6) always exist in the given coordinates
(t, x, v) under the same conditions. Physical problematic
aspects in the use of coordinate transformations are
discussed in the second paper of this series.

The following examples illustrate isorepre—
sentation (3.6). The equation of the linearly damped
particle in one dimension

mdv/dt + yv = 0, yeRn+X, v>0, (3.19)

admils isorepresentation (3.6) with values

T =8 evm 10 = U,=U, = 0, (3.16)
where 8 is a shape factor, eg., of the spheroidal type
(3.11) which is prolale in the direction of motion. In this
way, the isolopic Newton equations represent: 1) the
nonselfadjoint force FN4 = - yv experienced by an

object moving within a physical medium; 2) its extended
character (which is necessary for the existence of the
resistive force), and 3) the deformation of the original
shape (in the case considered a perfect sphere) caused
by the medium.

The equation lor the linearly damped harmonic

oscillator in one dimension
m¥ + yx +kx=10, ke RntX k>0, (3.17)

admits isorepresentation (3.6) with the values

T =8 e y =-4kx®, U =0 T° =1,

(3.18)

where S, represents the shape of the body

oscillating within a resistive medium. The interested

reader can construct a virtually endless variely of

isorepresentations of non-self-adjoint forces. A
systematic study will be conducted elsewhere.

Corollary 1.C

The isotopic Newton equations permit the
representation of nonlocal-integral forces when
completely embedded in the isouni! of the theory.

The above occurrence is permilted by the
integro—differential topology of isomanifolds M(E)
recalled at the end of Sect. |. Consider as an example
the integro—differential equation

mdv/dt + yv2 [, doSo,.) =0 y>0, (319

representing an extended object (such as a space-ship

during re-entry in our atmosphere) with local-
differential center-of-mass trajectory x(t) and
corrective terms of integral lype due to the shape
(surface) o of the body moving within a resistive
medium, where ¥ is a suitable kernel depending on o as
well as on other variables such as pressure, temperature,
density, etc. The above equation admils isorepre—
sentation (3.6) with the values

-1
T=8,e " <Jodasia,.) Lo =1, U = U, =0,
(3.20)
where §; is the shape factor, which is admitted by the
integro—differential topology of the isomanifold M(E)

because all integral terms are embedded in the isounit.

Rev. Téc. Ing. Univ. Zulia. Vol. 18, No. 3, 1995



" Santilli

283

Similar isorepresentations can be easily constructed by
the interested reader.

It should be recalled that the representation of
nonlocal-integral terms is prohibited in Hamiltonian

mechanics because the underlying geometry and
topology are local—-differential. In fact, the Lie-Koening
Theorem requires a local-differential approximation of
systems and it is inapplicable to integral systems of
type (3.19). Further developments and implications will
be discussed in the subsequent papers.
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