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Abstract

The effects of Hall currents on the Rayleigh-Taylor instability of an incompressible, finitely
conducting viscoelastic fluld were Investigated. It Is assumed that the fluid is permeated by a uniform
two-dimensional horizontal magnetic field. It is shown that the solution is characterized by a variational
principle. Proper solutions were obtained for a semi-infinite fluid in which the density varies
exponentially in the vertical direction. The dispersion relation was derived and solved numerically. It
was found that Hall currents and finite conductivity have a destabilizing influence, while viscosity and
elasticity have a stabilizing Influence on the growth rate of the unstable mode of disturbances.
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Estabilidad de una capa del fluido oldroydiano en
un campo magnético horizontal

Resumen

En el presente trabajo se investigaron los efectos de las corrientes de Hall sobre la inestabilidad
Rayleigh-Taylor de un fluido conductor finito, incompresible y viscoelastico. Se asumio que el fluido
esta permeado por un campo magnético uniforme bidimensional y horizontal. Se demostré que la
solucion esta caracterizada por un principio varlaclonal. Se obtuvieron soluciones apropiadas para un
fluido semi-infinito en el cual la densidad varia exponencialmente en la direccién vertical. La relacion
de dispersion se derivé y se solucloné numeéricamente. Se hallé que las corrientes de Hall y la
conductividad finita tienen una Influencia desestabilizadora, mientras que la viscosidad y la elasticidad
tienen una influencla estabilizadora en la tasa de crecimlento del modo inestable de las perturbaciones.

Palabras claves: Corrlentes de Hall, estabilidad, conductividad finita, viscosidad, elasticidad.

Several authors (e.g. Kruskal and Schwar-
zschild [4], Hide [5]) have pointed out the stabi-
lizing character of the magnetic fleld on this

Introduction

The study of the equilibrium of an Incom-

pressible inviscid fluld of variable density was
first undertaken by Raylelgh [1]. Taylor [2] stud-
led the stability problem of a heterogeneous fluld
accelerated in the direction perpendicular to the
plane of stratiflcation. Since then several
authors have investigated the Rayleigh-Taylor
Iinstability problem under various physical as-
sumptions. A comprehensive account of these
investigations carried out under various as-
sumptions of hydrodynamics and hydromagnet-
lcs has been glven by Chandrasekhar [3].

stabllity problem. The effects of Hall currents are
of considerable importance in the dynamics of
Interstellar matter and several other physical
sltuations. Several authors (e.g. Hosking [6],
Singh and Tandon [7], Ariel [8], Bhowmik [9],
Bhatla [10]) have studled the effects of Hall
currents on the Rayleigh-Taylor instability prob-
lem In hydromagnetic and found In general that
the Hall effect is destabilizing and gives rise to
news unstable modes.
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The effects of viscosity are also of consid-
erable importance in astrophysical situations.
Vest and Arpaci [11] have considered the stabil-
ity of a horizontal layer of a viscoelastic fluid
heated from below and obtained the conditions
under which a thermally induced overstability

occurs in a Maxwellian fluid. Bathla and Steiner
[12] have studied the thermal instabllity of a
Maxwell fluid In hydro-magnetic. Sharma [13]
studied the Rayleigh-Taylor Instability of a vis-
coelastic fluld through a porous medium. More

recently, Samria, Reddy and Prasad [14] have
investigated the MHD flow of an elastoviscous
fluid past a porous flat plate.

Gupta and Bhatia [15] have studied the
inestability of superposed, partially lonized plas-
mas In a two-dimensional horizontal magnetic
field. It is, therefore, of importance to examine
the effects of Hall currents and magnetic resis-
tivity on the Rayleigh-Taylor instability of a vis-
coelastic fluid. This aspect forms the basis of this
paper. For an Ideally conducting viscoelastic
fluld, this problem was recently studied by Ali
[16].

Perturbation Equations

We conslder the motion of an incompress-
ible, finitely conducting, viscoelastic fluid in the
presence of a uniform magnetic field.

The essential difference between Newto-
nian fluld and non-Newtonian fluids Is that while
Newtonian or Stokeslan fluid are characterized
by a linear relation between the stress tensor and
the rate of strain tensor, the non-Newtonian
fluids are characterized by a non-linear relatlon-
ship between the stress tensor and the rate of
strain tensor. Broadly speaking non-Newtonian
fluids can be divided Into viscoinelastic fluids,
viscoelastic fluids, polar fluids, dipolar fluids,
anisotropic flulds, fluids with microstructure,
and heat conducting nematic liquid crystals. For
a Newtonian fluid the problem of the stabllity of
a semi-infinite layer in a horizontal one-dimen-
sfonal magnetic fleld (including also the effects
of neutral gas friction was studied earlier by the
first author Bathia [10]). The aim of this paper is
to study the problem of stablility of a horizontal
layer of a non-Newtonian fluid of variable den-
sity. We study here this problem for an Oldroy-

dian viscoelastic fluid for which the costitutive
equation is

(1+Xa%)tu=2p(]+lo—aa—£)eu . (1)

where 1 Is the viscous stress tensor, pIs coef-
ficient of viscosity, A and A,(A, < A) are respecti-
vely the stress relaxation and strain retardation
time, and

1.8 du
Q z(a{lfax()r (2)

is the rate of strain tensor, Here w is velocity.
The viscous stress tensor 14 Is related to the total
stress tensor Ty through

—poy+ 1y (3)

where §; Is kronecker tensor and p is the scalar
pressure.

The equation of motion of an electrically
conducting fluid moving in a uniform magnetic
fleld.

Dt - gl + 5o Ty*”e"’ukfjun g (@)

where

£_a+ )
Dt~ ot Y

is the moblle operator, Hj Is magnetic field, p Is
density of the fluid, g Is gravity and A, = (0,0,1) Is
a unit vector along the vertical. For an Oldroy-
dian viscoelastic fluid, the hydromagnetic equa-
tion of motion (4) becomes, on using the consti-
tutive equation (3) in conjunction with (1),

__)
p(1 +7~ )—-(l+l )I—Vp+ue(VxH)x H+gp1

+(l+koa—t)[p.V2 W+ (V) Vu+ (V) -V I, (6)

where g’ = (0,0,-g). The relavant equations of
motion of an incompressible viscoelastic Oldroy-
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dian fluid in the presence of the effects of Hall

currents and magnetic resistivity are, therefore,
equation (5) and

—
%’zV:((II’J(ﬁHqu?—NleVXI(Vxﬁ)xm , (6)

d

P44 » =O,

at+(u Vip (7
__9

V.W=0, V-H=0, (8)

In equation (6) els the electron charge, N is
the number density of the particles of the me-

dium and n:(mi is finite constant magnetic

4

resistivity, o being the electrical conductivity. Let

dp, dp and R= (hy.hy,h,) denote the perturbation
respectively In density p, pressure p and the

magnetic fleld P_I) due to small disturbance given
to the system which produce the velocity fields
@ = (u,v,w) In the fluid. Retaining only the linear
terms in the perturbed quantities, we obtain the
linearized perturbation equations.

_.)
(l+}\§t) p%‘ = (1+la%) [-Vép + g’dp + BV xh—))xf_f)l

+(|+x,,a%)|uv2ﬁ’+(Vi?)-Vu+(Vu)‘VE’I, (©)

_)

—)
ﬂ‘=Vx('ﬁ’xH)+nv2H’-—1—Vx[(fo?’))clffl.(lo)
ot Ne
o o
aﬁp+(u-V)P=0- (11
V.@=0 and V-R=0 (12)

Analyzing the disturbance Into normal
modes, we assume that the perturbed quantities
have a dependence on the space coordinates
(x.y.2 and time t of the form

Rz)exp(ik x + l'kyy + ni) , (13)

where FlZ Is some function of z, Ky and K
(¥ =I¢+I) and wave number In x and y-
directions and n denotes the rate at which a
system departs from equilibrium.

It is assumed that I? = (Hy.Hy,0) is uniform.
Making use of expression (13) in equations (9) -
(12) and eliminating some of the variables, we
finally obtain four equations for the four vari-
ables w, h,, { and &

nlpkw — DpDw)] —%Kl (Dpyw
+ (il H, + ik H,) (D - i&)h,

1+A,n . v

— (WD? - i w + 2D WD? - I Dw
+ (D + 14 PPwuwl =0 , (14)

+

1+

x ‘
S W(DP- )~ D DIG = (e Hi i H
(15)

[np - 1+

[n =11 (D= I - (i H i, H) o (D~ KD,
= (i Hyr i, H)C (16)

[ (0P K, + - (il et ik, H,
= (k Het ik, H)w (17)

where D= d—dz and

{=ikyv-iku and E=ikh, - ikch, ,  (18)

are the z-components of the vector V x i’ and

Vxh , respectively.

Boundary Conditions

In the present paper it Is assumed that the
fluld is bounded between two rigid planes at
z=0and z = d, which are both assumed to be
Ideal conductors. Evidently, the fluid cannot
have a normal velocity on the boundaries, and
because of viscosity It cannot slip relative to the
boundaries. It, therefore, follows that

w=0, {=0. (19)
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At the rigid boundaries, since the bounding
surface Is assumed to be ideally conducting, no
disturbances within it can change the electro-
magnetic quantities outside. The normal compo-
nent of the disturbance in the magnetic fleld
must vanish at a rigid boundary. We must,
therefore, have

h,=0 at z=0 and z=d. (20)

Finally, equation (17) In conjuction with
equation (19) and (20), ylelds

E=0 at z=0 and z=d. (21)

Variational Principle

Dropping the suffix zon h, we suppose that
the solutions belonging to the characteristic
value n,are wy, hy,§; , & , and the solution belong-
ing to the characteristic value n; are wj, h;,
& » & - Multiplying equation (14) for i by w; and
integrating over the thickness of the fluid layer,
we get

n Jd [Pk 1, ~ DipDw)lw; dz - g Jd (Dpyw; dz

n <o
+ (i H + ikyHy) JA (172— kz)h,wj dz

1+A,n
e Id (WD~ I w, + 2(Dy) (D~ I®)Duw,

+(DP+ 1) (DPwwlw, dz=0 |, (22)

Integrating by parts once or repeatedly and
using the boundary conditions (19)-(21), we ob-
tain after setting i =

i
nlly ~ Iy + 1y -l -9 1,

1+2A,n

¥ g=I7 + g -1g)=0 , (23)

where
i -y

I :f ol(Dw)? + IFu?) dz , (24)
(o]

L= Jd Dpus dz , (25)
o

Is Jd (O + K] dz (26)

14:Jd§2dz : 27

b=[ oz, (28)
. |

[ Wi+ a0tz 9

I = Jd ul (DO + 1€ dz |, (30)

k= Id [ &)+ I%E%] dz (31)
o

Ih= Jd [ (OPW? + 21%(Dhy? + k'K dz | (32)

Consider a variation 8n in n consequent to
the variations dw, 8h, 8, 8 related to it through
perturbed form of equation (15)-(17) in w, h, {,
E respectively compatible with the boundary con-
ditions. By proceeding along the usual lines we
can show that, to first, order, én=0.

Fluid Layer of Varying Density

Stppose that the density in the Oldroydian
fluid layer iIs continuously stratified exponen-
tially along the vertical i.e.

(2) = py exp(B2) , (33)

where p; and B are constants, p; being the
density at the lower boundary.

We assume that the coefficient of kinematic
viscosity v, Is constant, so that

wz) = v, p exp(Pz) (34)

For mathematical simplicity, it is also as-
sumed that

B <1, (35)
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which implies that the difference between the
densities at two neighbouring points is much
less than the average density of the fluid (19)-
(21), consistent with the conditions to be satis-
fled at the boundaries (19)-(21), the trial solu-

tions for u(2), h(2), {(2) and &(2) are taken as

wz=Aysinlz  {(z)=Agsinlz 5
Wo=Aysinke  Ez=Asinlz| 0

where A}, Ay, As and A are constant and
=%:£, m being an integer.

Substituing these trial solutions in equa-
tion (22), using Equations (33)-(36) and eliminat-
ing the constants A;, Ay, A3 and A4 by using
equations (15)-(17), we finally obtain the disper-
sion relation

2 ghk®  1+An 5
n —12+k2+ l+xn-nva(tz+k})

s VP [[nena?+ i)

-1

- =
k H 2. - l+kon
( Ne )(tz+k2) n+vo(l2+k‘z) 1+M} o
‘ . I+Agn| [~
(K \7))l+ {mn(lz+k2)] {mvo(ll+k2) 1+kn}
(87
where
o 2 kHakH,  RE H+kH,
= nd =
Py Ne Ne
(38)
On writing
y=—"l M=l T ANGE. T=iNGE
@i M 1g 0o=ANgP , T=2inNgP
_k __He __Hy
=0Vt gy V2T Ty

V=1(V) cos 6 + V, sin 6)2,
L= (Ljcos 6+ L, sin 6)2

we obtain the non-dimensional form of the dis-
persion relation as

Y7 + 2YST[1 + (1 + ) (MT, + NT)]

+ Ys[l +2’12V)?+(1 +Xz)
(TLE + 2MT+ N+ MT,(2 + MT)|

+(1+ 2 TV« MNT (1 +41)}-1%}

+Y [n?‘(wv‘- MT, - 2NT) + (1 + )
[2M+ N+ MN@T;+ 4T) + 2DA(MT, (VL) + NV L)
+2(1 + 2y (MT(M + NN + MT)y+ TV} - ?L‘z}
108
+ Y [P@V+ PV - MT+ Ty + 4TN)
+ NA+AN + T, + 21) + 21 0A + NV(1 +47)
- TN(TN + 2MT,) - DAV - L) + L2) + MN(1 + x%)?
(6 + 2T, (1+VD¥P) + (142X 3MT, + 2N(T+T,) + NM”
+ T,MN( l+)/'z)2] + MLZ(1 + %)%

(MT21 + %) + 2T+ T -%}
+

+Y2[2)2(VT-N)—X4{TL+NV(2+72)+)2'(] )
[MN@T+ T,)) + M2V+ TT, L% 2N + MP(1 + 22)?
[2NV(T+ T,) + 2I(1 + MT,) - TT,\?|

+2MN(1 + 322 [N+ M(N(1 + 22 + 1))

+ Y[MZ(] Jr,\"l)3 J,N‘Z +A2(N2+L)f+x"!(] + xz)
[M{2N+ Lo® + N1 + 522V + N(T+ Ty)| - V¥

4 V2
- X (L+2TNV + =)
( 1+ }

" x’{MNa + 22 1 2NV + ML)] =0 (40)

where 8 Is the angle between the wave vector

__)
and H, and V) and Vj are Alfven velocities.

Conclusions

The dispersion relation (40) is quite com-
plex and a direct solution Is obviously quite
difficult to obtain. As we are Interested in know-
Ing the growth rate of the unstable modes, we
have performed numerical calculations of equa-
tion (40) to locate the roots of Y against x for
several values of the parameters M, L, L, V;,
V. To, T. N and the angle 6. These calculations

Rev. Téc. Ing. Univ. Zulia. Vol. 18, No. 3, 1995



310

Bhatia and Khan

Table 1

Values of growth rate (positive real value of Y) against wave numer x, To =0.1, 0.3, 0.5,
(here Vi =V2=0.25, L1 =12 =1.0, N=1.0, T=0.6, M=0.1 and 6 = 45°)

WAVE NUMBER (x) —»

Figure 1.

X Values of growth rate
To=0.1 To=0.3 To=0.5
0.0 0.0000 0.0000 0.0000
0.2 0.3465 0.3454 0.3441
04 1.0120 1.0124 1.0107
0.6 1.5890 1.5915 1.5936
0.8 1.9442 1.9483 1.9514
1.0 2.0910 2.0923 2.0918
1:2 2.0859 2.0823 2.0763
1.4 1.9878 1.9796 1.9689
1.6 1.8418 1.8306 1.8171
1.8 1.6781 1.6655 1.6510
2.0 1.5144 1.5017 1.4876
28.0—— 24.0
230 230 24.0
220 — 220 23-0
210 |- 210 220
g i 200 210
90 | —is0 Ba%
180 Jiso 190
e Hmo 18-0
180 |- —is-0 >
130 - iso e
f
14.0 |- ~14:0 1.
> L 14.0
=1%o ~iz0 I
E 12:0 }- M=2:0 120 E ::
x o ~{iro L3
; z n-o
g 100 - o0 § 0o
9.0 - —9-0 I
90
80 |- -Ta‘o 80
70 | 7.0
M=4-0 70
60 | — 80 &
il ] M=60 T e
40 - -140 40
2o |- b o] 30 A
20 20 zor- [/, :E‘O
o 10 1o | ,}}' 1o
I | o M (. A 1 Z° -
O 0204 0608 10 12 I'4 |6 I8 20 22

1 e 1 1
0O 0204 06 08 10 F2 4 g 18 20 22

WAVE NUMBER (x) —+

Figure 2.
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different values of M, To, Ly, L2, V1, V2, Nand 6.
From Table 1 it is seen that the growth rate Y
decreases for the same x (wave number) on
increasing the parameter T, characterizing the
elasticity on the fluid when the other parameters
are kept fixed. The effects of elasticity is, there-
fore, stabilizing. Also by elasticity for larges val-
ues of wave number x since the growth rate Is
seen to decrease with Increasing x. From Fig-
ure 1 we see that as M (viscosity) increases, Y
(the growth rate) decreases for the same x (wave
number) indicating that the influence of viscos-
ity is stabilizing. It can also be seen from Figure 1

that viscoslity can also stabilize the system com-
pletely for large wave numbers for the growth

rate Ig geen to decreage for large L Further it is

seen that the more the fluid is viscous the
smaller is the wave number for which the system
can be completely stabilized. From Figure 2 it is
seen that Y (growth rate) increases as L (Hall
current) increases for the same x, thus Indicat-
ing the destabllizing character of the Hall cur-
rent. Figure 2 shows that Yincreases as N (finite
conductivity increases for the same x. The influ-
ence of finite conductivity Is thus also destabl-
lizing.

We may thus conclude that the viscosity
has a stabilizing effects while Hall currents and
finite conductivity have a destabilizing Influence
on the stability of a viscoelastic fluid. In that
respect the results are the same as obtalned
earlier for Newtonlan fluld.
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