Rev. Téc. Ing. Univ. Zulia. Vol. 19, No. 2, 69-83, 1996

Isotopic lifting on differential geometries

Ruggero Maria Santilli

Division of Mathematics, Istituto per la Ricerca di Base
Castello Principe Pignatelli, -86075 Monteroduni (IS), Molise, Italy
e-address ibrrms@pinet.aip.org

Abstract

In the first paper of this series we have introduced the isotopies of the differential calculus and of
Newton's equations of motion. In the second paper we used these results to construct the isotopies of
analytic and quantum mechanics. In this third paper we apply the preceding results for the construction
of the isotopies of conventional differential geometries, such as the symplectic and Riemannian
geometries. The primary motivation is that, in their conventional formulation, these geometries are
local-differential. As such, the are only valid for the exterior dynamical problem of point-like test bodies
moving in the homogeneous and isotropic vacuum. The isotopic geometries result instead to be valid for
the interior dynamical problem of extended and deformable test bodies moving within inhomogeneous
and anisotropic physical media with conventional local-differential and variationally self-adjoint as well
as nonlocal-integral and variationally nonselfadjoint resistive forces. In this paper we show that the
isotopic geometries preserve all original axioms to such and extent that they coincide at the abstract
level with the conventional geometries. '

Key words: Isotopies, isosymplectic geometry, isoriemannian geometry.

Levantamiento isotopico de geometrias
diferenciales

Resumen

En el primer trabajo de esta serie presentamos las isotopias del cilculo diferencial y de las
ecuaciones de movimiento de Newton. En el segundo, utilizamos estos resultados para construir las
isotopias de la mecanica cuantica y analitica. En este tercer trabajo aplicamos los resultados anteriores
para la construccion de las isotopias de geometrias diferenciales convencionales, tales como las
geometrias simpléticas y de Riemann. La motivacién primaria es que, en su formnulacién convencional,
estas geometrias son locales-diferenciales. Como tales, sblo son validas para el problema dinamico
externo de cuerpos de prueba puntuales que se mueven en un vacio homogéneo e isotépico. En cambio,
estas geometrias isotdpicas resultan ser validas para el problema dinamico interno de cuerpos
experimentales extendidos y deformables moviéndose en medios fisicos no homogéneos y anisotopicos
con fuerzas resistivas tanto locales diferenciales y variablemente auto-lindantes como no
locales-integrales y variablemente no auto-lindantes. En este trabajo demostramos que las geometrias
isotopicas preservan todos los axiomas originales hasta un punto tal que coinciden, a nivel abstracto,
con las geometrias convencionales.

Palabras claves: Isotopias, geometria isosimplética, geometria isoriemaniana.
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1. Statement of the problem.

The contemporary geometries, such as the symplectic

geometry (see, eg., [l or [23] for a review and
comprehensive literature) and the Riemannian

geometry [14] (see, e.g, [I] for historical profiles and [12]
for a recent account in local coordinates) have
permitted during this century truly outstanding
achievement for a deeper understanding of the physical
structure of the Universe (see Einstein’s collected papers
(29D.

Nevertheless, these geometries are [ocal-
differential and, as such, they have well defined
limitations in their applications to physical systems
which are expressed by the historical distinction
between

1) the exterior dynamical problems, consisting of
point-like test bodies moving in the homogeneous and
isotropic vacuum, such as a space-ship in a stationary
orbit in vacuum around Earth or a proton in a particle
accelerator; and

2) the interior dynamical problems, consisting of
extended and deformable test bodies moving within
inhomogeneous and anisotropic physical media, such as
a space-ship during re-entry in our atmosphere, or a
proton in the core of a collapsing star.

This distinction was introduced by Lagrange [10},
Hamilton [7] and other founders of analytic dynamics.
In the preceding paper [25] (hereinafter referred to as
Paper 1) we have recailed that Newton's equations of
motion contain local-differential terms describing
action-at-a—distance, potential forces and representable
via a first-order Lagrangian, plus nonlocal-integral and
nonlagrangian terms representing precisely the resistive
forces of interior dynamical problems. As recalled in
paper [26] (hereinafter referred to as Paper 11}, Lagrange
and Hamilton formulated their celebrated equations, not
in the form of widespread use in the contemporary
mathematical and physical literature, but rather in the
form with external terms representing precisely the
additional forces of interior conditions.

The distinction between exterior and interior
dynamical problems was fully adopted during the early
studies in gravitation [29], as illustrated, eg., by
Schwartzschild's two papers, the first famous paper
(27] on the exterior gravitational problem and the

second little known paper [28] on the interior problem.
The same distinction was also kept in the early well
written treatises in gravitation (see, eg., the monograph

by Bergmann [2] with a preface by Einstein).
Particularly significative is the adoption in these

early studies of the Riemannian geometry and ensuing
physical theories as being exactly valid for the exterior
problem and approximately valid for the interior
probler [28].

Regrettably, the above distinction was
progressively relaxed during the second part of this
century, up to the current condition of virtual complete
silence in the specialized mathematical and physical
literature.

In particular, the distinction was eliminated where
it is needed most, in the interior conditions of
gravitational collapse, black holes, big bang and ail that,
where the interior dynamical problem reaches its
extreme conditions. In fact, collapsing stars are not a
collection of ideal point-particles (as necessary for the
applicability of the symplectic and Riemannian
geometries), but in the physical reality they are
composed of extended and hyperdense protons and
neutrons in conditions of total mutual penetration, as
well as of compression in large numbers into small
regions of space. These conditions imply the most
general conceivable interior field equations which are
arbitrarily nonlinear in the velocities and accelerations,
as well as nonlocal integral and nonlagrangian. The lack
of exact validity of conventional local-differential
geometries under the latter conditions is then beyond
scientific doubts.

The elimination of interior dynamical conditions
from the contemporary mathematical and physical
literature has been essentially done via the reduction of
interior problems to a collection of exterior ones in
vacuum. For instance, a space-ship during re-entry
with nonlocal-integral and variationally non-seif-
adjoint forces is reduced to an ideal collection of point-
like elementary particles. The expectation is that, in this
reduction, conventional geometries are re—established at
the particle level.

By keeping in kind that a quantum version of
gravity (which is a pre-requisite for the reduction) has
not yet been achieved in a form acceptable by the
scientific community at large, recent studies have
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established that the above reduction is mathermatically
and physically impossible. In fact, there exist
nowadays the so-called No-Reduction Theorems [24]
which establish that a space-ship during re-entry on a
decaying orbit with a monotonically decaying angular
momentum cannot be consistently reduced to a finite
collection of point-like particles on stable orbits with
conserved angular momenta (as necessary for the exact

applicability of conventional geometries and
symmetries). Additional reasons for the lack of exact
applicability of conventional geometries for interior
conditions are studied in ref. [24].

At any rate, one of the pillars of the Riemannian
geometry is the representation of the homogeneity and
isotropy of the vacuum. As such, the same geometry
cannot effectively represent the inhomogeneity and
anisotropy of physical media such as our atmosphere.

Also, it is known in the literature (see, e.g., E.
Cartan [4D that the Riemannian geometry can recovers
only some but not all Newtonian systems of our
physical reality. A typical examples is given by missiles
in atmosphere which nowadays have reached such
speeds to require drag forces up to the seventh power in
the velocity and more,

FISA = = 3 1224567 Yk X5, (1.1

where the y’s are positive-definite constants. Force (1.1)
is evidently a truncated power series approximation of
the actual nonlocal-integral forces depending on the
shape of the missile. The inapplicability of the
Riemannian geometry for interior systems with forces
(1.1) is then beyond scientific doubts.

The fundamental geometric problem addressed in
this paper is therefore the identification of novel
geometries specifically constructed for interior
dynamical problems, that is, capable of representing
extended and deformable test bodies mowing within
inhomogeneous and anisotropic physical media with
arbitrarily nonlinear, nonlocal-integral and
nonlagrangian forces. Moreover, to be effective for
physical apptications (particularly for experimental
verifications), the new geometries must admit the
original geometries as a particular case f(ie., be
covering geometries) and permit a clear and
unambiguous separation between the exterior and

interior contributions .

Without any claim of uniqueness, this author
selected the isotopic methods for the construction of
the new geometries, as originaily presented in ref.s
[18,19,20] and then studied in detail in [24,25] under the
names of fsoeuclidean, isominkowskian, isosymplectic,
isoaffine and isoriemannian geometries, generically
referred to as isogeomnetries. The selection was done on

purely physical grounds because the isotopies permit
the preservation of the original geometric axioms, thus
preserving the Einsteinian axioms as well. Other
geometries, such as conventional integral geometries, do
not generally preserve the original axioms, thus creating
the problem of identifying new physical axioms and,
after that, of proving them experimentally.

) Moreover, the isogeometries admit conventional
geometries as a particular case and clearly separate
exterior and interior contributions. In fact, the isotopies
of conventional space-time geometries are based on the
lifting of the conventional (3+I}dimensional unit [ =
diag. (1, 1, 1, 1) into the most general possible (3+1)}-
dimensional isounits of Kadeisvili Class I [8] (sufficiently
smooth, bounded, nowhere singular, real valued,
symmetric and positive-definite) with nonlinear and
nonlocal-integral dependence on coordinates x, their
derivatives X, X, .., with respect to an independent
variable and any needed additional variable. In their
diagonal form, the isounits can be written

1 = diag. {n; 2 n, 4 ngn 2 G K & =) (1.2)

where diag. ( n;% n,% ny? ) represents the
nonspherical-deformable shape of the test body
considered, n,"2geometrizes its density, and fx, %, %, ..
represents the nonlinear, nonlocal and nonhamiltonian
interactions (see [24] for details, applications and
verifications). Conventional action-at-a-distance
interactions are represented via the conventional
potential.

[n this way, the isogeometries recover identically
and unambiguously the conventional geometries of the
exterior problem in vacuum for 1 = [ and permit a clear
separation suitable for experimental verifications
between exterior and interior contributions via the
deviation of 1 from .

The first isogeometries were constructed by this
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author [18,19,20] with isotopies based on the degree of
freedom of the conventional muitiplication. The main
Characteristic of these isotopies is that the original
geometric axioms are preserved on isospaces over
1sofield, as well as on their projection into the original
space over ordinary fields.

In this paper we introduce, apparently for the first
time, isogeometries constructed via the isodifferential
calculus. As we shall see, the latter are more general
than the former because the original geometric axioms
are indeed preserved in isospaces over isofields, but not
necessarily in their projection in the original spaces
over ordinary fields.

The isoeuclidean geometry has been studied in
detail in monograph [23]. Its reformulation in term of
the isodifferential calculus is elementary and implies no
major structural change. The isominkowskian
geomelry can be obtained as the tangent geometry to
the isoriemannian one. We shall therefore limit
ourselves to the study of the isosymplectic and
isoriemannian geometries based on the isodifferential
calculus.

Our analysis is mainly local, owing to the need to
identify geomnetries which are specifically applicable in
Lhe given inertial frame of the observer (see Paper II).
Abstract, coordinate-free treatments are therefore
merely indicated. All results of this paper can be easily
extended to isounits of Kadeisvili Class Il (same
property of Class [ except that 1 is negative—definite)
and of Class II1 (union of Class I and II). However the
extension to Classes IV (Class I11 plus singular isounits)
and V (Class IV plus arbitrary isounits, including
discontinuous isounits) requires specific studies.

The reader should be aware that the isogeometries
of Class 11, called isodual isogeometries, have resulted
to be particularly suited for a novel treatment of
antimatter [24]. In fact, the operator formulation of
the antiautomorphic map

10 —- 1 = <o, (1.3)

called by this author isoduality, is equivalent to charge
conjugation. This has allowed the initiation of: novel
studies, such as the first astrophysical studies beginning
at the classical level and then persists under
isoquantization (Paper [) of stars, galaxies and quasars

as made-up entirely of antimatter; experimentally
verifiable studies of antigravity; and others [24]. By
comparison, conventional methods permit the
treatment of antimatter only at the level of second
quantization, as well known.

The isogeometries of Class [II have stimulated a
new cosmology in which the Universe can be made up
of equal distributions of matter and antimatter with
intriguing features, such as null total energy, null total
time, etc. [24] (because isodual isofields [22], having a
negative-definite norm, imply physical characteristics
of antimatter opposite to those of matter, resulting in
null total characteristics for equal distribution of
matter and antimatter).

Finally, the reader should be aware that the
isogeometries of Kadeisvili Class [V have resulted to be
particularly significant for further advances on
gravitational singularities for both matter and
antimatter. In fact, conventional (3+1)-dimensional
Riemannian metrics g(x) always admit the factorization
of the Minkowskian metric,
gx) = Tlx)m, n = diag. (1, I, 1, -1). (1.4)
Gravitational horizons (singularities) are then given by
the zeros of the isotopic element Tg (isounit 1g,)

Gravitational horizons: Tg(x) = 0; Gravitational
singularities:

g0 = 0. | (15)

But the above representation has no effective
contribution from the internal nonlinear, nonlocal and
nonlagrangian effects. The isoriemannian geometry
therefore permits the enlargement of the definition of
gravitational horizons and singularities for the inclusion
of interior nonlinear and nonlocal effects which is
achieved via the zeros of the general isotopic elements
and isounits, respectively,

Gravitational horizons: Tg,(x, X % ..)=0; (1.5a)
Gravitational singularities: Tg{x X % ..) = 0. (1.5b)

The latter comments have been made in the hope of
stimulating mathematical studies on the isotopies of
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Kadeisvili Class IV which are vastly unknown at this
writing.

One should also note that the isotopies have
permitted the construction of the universal symmetry
for all possible (3+1)-dimensional, exterior and interior
gravitation, called isopoincare’ symmetry $3.1), and that
symmetry has resulted to be locally isomorphic to the
Poincare’ symmetry P(3.1) {24] (see independent review
[9). The isosymmetry is again constructed via the
Minkowskian factorization of any given exterior or
interior metric g = Tg,n, and the reconstruction of the
conventional Poincare’ symmetry with respect to the
isounit 1, = T ™. The local isomorphism P(3.1) ~ P(3.1)
follows from the positive—-definiteness of the isotopic
element T, for all physical models of gravitation
(outside the gravitational horizon). The universality of
the P(3.1) isosymmetry for all infinitely possible
gravitations follows from the unrestricted functional
dependence of the isounit 1g,(x, X, %, ..).

In turn, the achievement of a universal symmetry
for gravitation has stimulated numerous novel studies,
such as a possible unification of relativistic quantum
mechanics and gravitation via the embedding of
gravitation in the unit of conventional theories, and
others [24].

Finally, the reader should remember from the
introduction of Paper | that the isogeometries are a
particular case of the genogeometries 16,23 (in which
case the totally symmetric character of the genometric
is relaxed) and that, in turn the genogeometries are a
particular case of the multivalued hypergeometries (in
which the unit can assume an ordered set of values).

2. Isosymplectic geometry.

We identify in this section the isotopies of the
symplectic geometry, called isosymplectic geometry
for short, as the geometry underlying the isohamilton
equations and related Lie-isotopic theory of Paper II.
These isotopies were first studied by this author in ref.
[19], then subjected to deeper studies in subsequent
papers and in monograph [23] via the lifting of the units
and of the conventional associative product. The
formulation of the isosymplectic geometry based on the

isodifferential calculus is presented here for the first
time.

Unless otherwise stated, all quantities are assumed
to satisfy the needed continuity conditions, e.g., of being
of class C€® and all neighborhoods of a point are
assumed to be star-shaped or have an equivalent
topology. For a presentation of the conventional
symplectic geometry we refer to [l], while
comprehensive literature in the field is available in ref.
[16] and it is omitted here for brevity.

Let M(E) = M(E(3,R) be an N-dimensional Tsagas-
Sourlas isomanifold [20,31] modified according to
Definition 3 of Paper I on the isoeuclidean space E(x,5,R)
over the isoreals R = R(A,+X) with NxN-dimensional
isounit 1= (%), i, j=1,2 .., N, of Kadeisvili [8] Class | and
local chart x = {xX). A tangent isovector X(m) at a point
m € M(E) is an isofunction defined in the neighborhood
N(m) of m with values in R satisfying the isolinearity
conditions

R axT+PRg = axRM+B* @), R T*p) =

= Hm) % Rz@) + glm)* X (1), 2.1

for all T, g € M(E) and a, B € R, where % is the
isomultiplication in R and the use of the symbol ~
means that the quantities are defined on isospaces.

The collection of all tangent isovectors at m is
called the tangent isospace and denoted TM(E). The
tangent isobundle is the 2N-dimensional union of all
possible tangent isospaces when equipped with an
isotopic structure (see below). The cotangent isobundle
T*M(E) is the dual of the tangent isobundie and it is
defined with respect to the isounit 1, = diag. (1, 1) = diag.
(T, 171), with the understanding pointed our in the
preceding section that more general isounits of the type
1,=diag. (1, W), W =1, are possible because of the
independence of X and p.

Let 6=(6" =X pJ, =1, 2 ..., 2N, be a local
chart of T*M(E). An isobasis of T*M(E) is, up to
equivalence, the (ordered) set of isoderivatives 8 =
{8/36#) = {T,"a/ab". A generic elements R € T*M(E) can
then be written X = X¥m) 8/a6*

The fundamental one-isoform on T*M(E) is given
in the local chart b by

Rev. Téc. Ing. Univ. Zulia. Vol. 19, No. 2, 1996



74

Santilli

b= RLB1A6 = RS, B = A% =, 1%k,
R=(p0). 22)

The space T*M(E), when equipped with the above one-
form, is an isobundle denoted T*M(E). The isoexact,
nowhere degenerate, isosymplectic two-isoform in
isocanonical realization is given by

b=aB = AR, A6*) =w,, A A QDY =
= 28k Adp, = 1% dX'A T0dp, = d&* Adp = o
(2.3

The isospace T*M(E), when equipped with the above
two-isoform, is an isosymplectic isomanifold in
isocanonical realization denoted T,*M(E). The
isosymplectic geometry is the geometry of the
isosymplectic isomanifolds.

The last identity in (2.3) show that the
isosymplectic isocanonical two-isoform & formally
coincides with the conventional symplectic canonical

two-form w. The abstract identity of the symplectic
and isosymplectic geometries is then evident. This
illustrates on geometric grounds Bruck's (3] statement to
the effect that "the isotopies are so natural to keep in
un-noticed”. However, one should remember that the
underlying metric is isotopic, that p, = T,'p, where p is
the variable of the conventional canonical realization of
the symplectic geometry. and that identity (2.3) no
longer holds for the more general isounits 1, = diag. (1,
W1). Also, the symplectic geometry is local-differential,
while the isosymplectic geometry admits nonlocal-
integral terms when embedded in the isounit.

A vector isofield R(m) defined on the
neighborhood N(m) of a point m € T,*M(E) with local
coordinates b is called isohamiltonian when there
exists an isofunction A on R(m) over R such that £ _| @

=-dR, ie,
w,, X(m) ab* = aAlm) = (A /3b*) ab¥, (2.4)
which are equivalent to isochamilton equations (I1.4.10a).

The isosymplectic geometry is therefore the geometry
underlying the isohamiltonian mechanics of Paper Il.

It is straighforward to construct isoforms 6p of

' arbitrary order p. The proof of the following property

then follows from the properties of the isodifferential
calculus.

Lemma 1 (Isopoincare” Lemma)

Under the assumed smoothness and regularity
conditions, isoexact p—isoforms are closed, ie.,

a8, = a(3,,) = 0. 23

For the two—dimensional case (see, e.g., [15] or [17),
the conventional Poincare lemma is known to provide
the necessary and sufficient conditions in geometric
form for the contravariant tensor " = [(wyg"F¥ to be
Lie, i.e, for brackets (I1.3.9) to satisfy the Lie algebra
axioms, where w,, is the canonical symplectic tensor. In
this way, the symplectic geometry is the geometry
underlying Lie’s theory.

The isopoincare lemma for the two-dimensional
case provides the necessary and sufficient conditions
for the same contravariant tensor w*’ to be , this time,
Lie-isotopic, i.e., for the isobrackets ([1.3.21) to verify
the Lie axioms in isospaces over isofields [23]. The
isosymplectic geometry is therefore the geometry
underlying the Lie-Santilli isotheory.

The general one-isoform in the local chart b is
given by

6 = R(B)ab* = R (B1,01,b,ab/aL, ) db”, R =
= (Pp), O% p)) . (26)

The general isosymplectic isoexact two-isoform in the
same chart is then given by

0 = A(RUB)AB’) = O, (6 ab/aL, ) A A 3B,

n, (2.7a)
3R, aR, oR,,
Q\.w = —_— = Ta‘a - Tb'a .
Elog Elig aba ab?
(2.7v)

One can see that, while at the canonical level the exact
the two-form w and its isotopic extension & formally
coincide, this is no longer the case for exact, but
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arbitrary two forms €1 and (1 in the same local chart.

Note that the isoform () is isoexact, () = 36, and
therefore isoclosed, €1 = 0, in isospace over the isofield
R. However, if the same isoform () is projected in
ordinary space and called (), it is no longer necessarily
exact and, therefore, it is not generally closed, d(} # 0.
These properties prove the following

Lemma 2 (General Lie-Santilli Brackets)

Let 0 = O, dB*AQDY be a general exact two-
isoform, () = 36 = G(Ruaff‘). Then the brackets among
sufficiently smooth and regular isofunctions A(b) and
B(6) on T,"M(E)

9A 3B
[AB] = ¢ s ; (2.8a)
tsot. abu Y
Ry, My
= | - )T (2.80)
ob? abe

satisfy the Lie-Santilli axioms in isospace (but not
necessarily the same axioms when projected in
ordinary spaces).

An important property of the symplectic
geometry is Darboux’s Theorem [5] which expresses the
capability of reducing arbitrary symplectic two—-forms
to the canonical form or, equivalently, the reduction of
Birkhoff’s to Hamilton’s equations. (Paper 1) The
following additional property completes the axiom-—
preserving character of the isotopies of the symplectic
geometry.

Theorem 1 (Isodarboux Theorem)

2N-dimensional isocotangent bundle T,*ME)
equipped with a nowhere degenerate, exact, C° two-
isoform Q in the local chart b is an isosymplectic
manifold if and only if there exists coordinate
transformations b — b’ (b) under which Q reduces to
the isocanonical two—isoform @ Le.

ab* "
WG G)) = .- (29)
ab’ o 3

~ PROOF. Suppose that the transformation b — b{b)
occurs via the following intermediate transform b =
b(6) » b(b1bl). Then there always exists a transform b
- b” such that

(36 /36 9} (b") = 17, (Bib) (2.10)

under which the general isosymplectic tensor @,

reduces to the Birkhoffian form when recompute in the
b chart

log apY aR, d

Q667 = - R ) =
b o e 15 gpe v 1Y
= Qg " (.11

The existence of a second transform b” = B reducing
Qs 10 Ly is then known to exist (see, e.g., [1,15,17). This
proves the necessity of the isodarboux chart. The
sufficiency is proved as in the conventional case. QE.D.

The isotopies of the remaining aspects of the
symplectic geometry (Lie derivative, global treatment,
etc.) can be constructed along the preceding lines and
are omitted for brevity.

Remark 1. The symplectic geometry in canonical
realization can geometrize in the given b—chart only a
subclass of Newtonian systems, namely, conservative
systems plus & restricted class of nonconservative
systems called nonessentially nonselfadjoint [15). The
remaining systems can only be geometrized via their
representation with respect to an arbitrary symplectic
two-form and its reduction to the canonical! form via
the Darboux’s transforms. However, the Darboux
transforms are nonlinear and therefore, as recalled in
Paper I, they cannot be realized in laboratory and
imply the loss of conventional relativities because of
the loss of the inertial charactler of the original frame.

Remark 2. The direct universality of the
conventional symplectic geometry for Lhe
characterization of all possible local, analytic and
regular Newtonian systems (universality) in the frame
of the experimenter (direct universality), was proved in
ref. [17] via the use of the general one-forms on the
ordinary cotangent bundle T*M(E) = T*ME(x,8,R)] in the
local realization

6 = R,(b) db¥, (2.12)
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with corresponding general, exact, symplectic two—form
0 = Ql),, db* Adb”, (2.13)

where Q,, is the Birkhoffian tensor (IL.1.11). A vector

field X(m) in the neighborhood of a point m € T*M(E)
which is not Hamiltonian in the given chart b results to
be always Birkhoffian in the same chart, i.e, when a
function H on N(m) such that X_kw = —dH does not exist
in the b-chart, there always exist a Birkhoffian tensor

€,,{b) such that X_IQ = —dH. The maps within a fixed b-
chart ® = © and w — (0 were identified in ref. [25] as a
first form of isotopies of the symplectic geometry in
canonical realization.

Remark 3. Despite the achievenent of the above
direct universality, the symplectic geometry continues
to be insufficient for recent applications owing to its
local-differential character.

A second isotopy of the symplectic geometry for

the characterization of nonlocal, integral terms was -

submitted by this author [I8] via the lifting of the unit
and of the associative product while preserving the
conventional differential calculus. For instance, the
isocanonical one-form on T*M(E) in the above
formulation is given by

B = R(B) T, db. 214

and, as such, it coincides with one-isoform (2.2) except
for the replacement of the isounit with the isotopic
element. The isotopic degrees of freedom of the product
of the former are then transferred to those of the
differentials in the latter. However, two-isoforms result
to be different in the two approaches, as one can verify
(see ref. [23] Sect. 5.4 for brevity).

The above second isotopy of the symplectic
geometry preserves all conventional axioms, including
the Poincaré Lemma, the Darboux’s Theorem, etc. Also,
the latter theorems hold in both isospaces as well as in
their projection into the conventional spaces. In
particular, the generalized brackets were Lie—isotopic in
both isospace and in their projection in the conventional
space.

The drawback of the above isotopy is that it
implies the loss of the basic unit 1, in the transition
from one- to two—isoforms evidently due to the use of

the conventional calculus (see also ref.s [23] Sect. 5.4 for
brevity). In turn, the lack of invariance of the unit has
serious problematic aspects of physical character, eg.,
in the conduction of measurements.

In this section we have introduced the third

isotopy of the symplectic geometry studied by this
author, this time based on the isodifferential calculus.

Its main advantages over the preceding isotopies is its
remarkable simplicity, as well as the preservation of the
basic unit 1, = diag. (1, T) for isoforms of arbitrary
order, thus permitting its consistent application for
measurements. Another advantage is that the
conventional coordinate-free treatment of the
symplectic geometry can be preserved in its entirety
for the characterization of the isosymplectic geometry
submitted in this section and merely subjected to a
more general realization of the symbols such as dx, dH,
etc. [n different terms, the contemporary coordinate-
free formulation of the symplectic geometry(as
available, e.g., in [1]) can be left completely unchanged
for the characterization of the covering i1sosymplectic
geometry, and merely subject the isodifferentials to a
more general realization.

Remark 4. The isosymplectic geometry of this
section is particulariy suited for the isotopies of
symplectic quantization first studied by Lin [11] and
then treated in [24]. For instance, the canonical two—
form w can be re-interpreted as the isoform, @ = w, the
curvature V=wh"!, h = |, is then automatically re—
interpreted as the isocurvature V = wT etc. (see ref. [24],
Ch. 2 for details).

As a result, the entire formalism of symplectic
quantization admits a unique and unambiguous isotopic
interpretation without any major reformulation. It then
follows that hadronic mechanics of Paper Il is indeed
the unique and unambiguous operator image of the
isohamiltonian mechanics.These isotopies are
significant for the study of nonlocal-integral and
nonhamiltonian interactions in particle physics,
superconductivity and other fields.

Remark 5. The nonlinear, nonlocal and
noncanonical character of the isotopies is evident from
the preceding analysis. It is important to point out that
linearity is reconstructed in isospace and called
isolinearity, as shown in Eq. (2.1). Locality is equally
reconstructed in isospace, and called isolocality,
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because one— and two—isoforms are based on the local
isodifferentials dx and dp. Similarly, canonicity is
reconstructed in isospace, and called isocanonicity,
because the canonical form p,dx* is preserved by the

isotopic form p,dx* in isospace. The nonlinear, nonlocal
and noncanonical character of isotopic theories solely
emerge when they are projected in the original spaces.

Numerous other reconstruction of original
properties in isospaces occur under isotopies. As an
example, it is easy to see thal isogroups are
characlerized by nonunitary transforms in an ordinary
Hilbert space X, i.e., for U = exp{iATt), we have UU! = [
owing to the noncommutativity of A and T. However,
these transforms do verify the axiom of unitarity when
written in the isohilbert space 3 (Paper II). In fact, all
nonunitary operators U can always be decomposed in
the form U = 0T"2 yielding the isounitary law 00 =
010! =1 = 0.

The latter point illustrates the lack of equivalence
between conventional and isotopic theories which are
connected at the classical level by noncanonical
transforms and at the operator level by nonunitary
transforms (see [24] for details).

3. Isoriemannian geometry.

The Riemannian geometry [14] is exactly valid for the
exterior gravitational problem in vacuum, because an
extended body moving in the homogeneous and
isotropic vacuum (such as Jupiter in its planetary
trajectory around the Sun) can be effectively
approximated as a massive point, thus providing the
physical foundations of the local-differential character
of the geometry.

As outlined in Section | (see [24] for details),
the Riemannian geometry is only approximately valid
for interior gravitational problems (such as a space-
ship during re-entry in our inhomogeneous and
anisotropic atmosphere) because the shape of the body
considered affects its trajectory and the local-
differential treatment is no longer exact.

Numerous deformations-generalizations of the
Riemannian geometry have been studied during in this
century to represent more general conditions, but they
generally imply the abandonment of the space-time

Riemannian and, therefore, of the Einsteinian axioms in

favor of yet un-identified axioms.

This author submitted in 1988 [20] (see [24}, Ch. 9,
for a comprehensive presentation) the isotopies of the
Riemannian geometry, called isoriemannian geometry,
to achieve the desired representation of arbitrary
nonlinear and nonlocal effects while preserving the
original Riemannian and Einsteinian axioms. The
isogeometry was constructed via the isotopic lifting of
the unit and of the conventional associative product of
the original geometry while preserving the conventional
differential calculus. The emerging generalized
geometry did result to be an isotopy of the original one,
that is, preserving the original Riemannian axioms,
while permitting the representation of nonlinear and
nonlocal effects via their embedding in the generalized
unit. However, the use of the conventional differential
calculus implies the lack of invariance of the basic
isounit, with consequential problematic aspects for
measurements indicated earlier.

In this section we shall present, apparently for the
first time, the isoriemannian geometry formulated via
the isotopy of the differential calculus and show that
the latter formulation is more conducive to a single,
unified, abstract formulation of the geometry with
different realizations, the conventional local-
differential one for the exterior problem in vacuum and
the more general nonlocal-integral isotopic one for
interior problems within physical media. Our study will
be again in local realizations representing the fixed
inertial {rame of the observer while all abstract
treatments are left to the interested reader. For the
conventional case we assurne all topological properties
of Lovelock and Rund [12] of which we shall preserve
the symbols for clarity in the comparison of the results.
For the isotopic case we assume the topological
properties by Tsagas and Sourlas [30,31] implemented as
per Definition 3 of Paper | which are also tacitly implied
hereon. Our presentation is made, specifically, for the
(3+1)-dimensional space-time, the extension to arbitrary
dimensions and signatures being elementary.

Let & = R(x,g,R) be a (3+])-dimensional Riemannian
space over the reals R(n,+) [12] with local coordinates x
= {4 ={r, x%, x*=c,t, L= 1, 2 3, 4, where c, is the speed
of light in vacuum, nowhere singular, symmetric and
real-valued metric g(x) = (g,) with tangent Minkowski
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Minkowski space M(x,T,R) with metric n = diag. (1, , I, =
) .The interval the familiar expression x* = x*g, ,(xx" €
R with infinitesimal line element ds? = dx“g,,(xldx" and

related formalism (covariant derivative, Christoffel’s

symbols, etc. 18],

Let f = A(x,g,R) be an isotopic image of R, called
isoriemnannian space, first introduced by this author in
ref. (18] of 1983, with local coordinates x = {x*} (= {x*})
and isometric ¢ = Tg, where T = (T,") is a nowhere
singular, symmetric, real valued and positive-definite
4x4 matrix with C* elements. The isospace R is defined
over the isoreals R = R(n,+ %) with isounit 1 =14 ) = 771
The lifting & — R leaves unrestricted the functional
dependence of the isounit/isotopic element, which can
therefore depend in an arbitrarily nonlinear and
nonlocal-integral way on the coordinates %, velocities v
= dx/dT, accelerations a = dv/dT, and any needed
additional quantity of the interior medium, such as
density y, temperature T, etc. By recalling that the
original unit of R is I = diag. (1, 1, I, 1), the lifting & — R
is characterized by [23,24]

[=diag.(,1,1,1) = Wxv,apT.) =T (3l
glx) »gx v,aumT.)="Tg. (3.10)
We then have the isoline element
X2 = [t g%V ap T, )X 1 €R, (3.2
with infinitesimal version
32 = (kg 0% )1 eR. (3.3)
The capability of representing arbitrarily nonlinear and
nonlocal effects of the interior problem as well as
inhomogeneous and anisotropic media is therefore
embedded ab initio in the isoriemannian geometry.

The isonormal coordinates y occur when the

isometric g is reduced, not to the Minkowski metric T,
but rather to its isotopic image, i, g~ Ty = Tyn; and,

as such, they are the conventional normal coordinates

{principle of iscequivalénce). In different terms, the
correct tangent space is not the conventional space
M(x,nR), but the isominkowskian space M(x,A,R) first
submitted in ref. [25]. In particular, we have the
following

Lemma 3:

The isounit and related isotopic element are the
same for both the isoriemannian spaces and its tangent
isominkowskian spaces.

Under these conditions, the isonormal coordinates
only reduce the g-component in § = Tg to the n-
component of § = Tn. As a result, isonormal
coordinates coincide with the conventional normal
coordinates.

It is easy to see that, despite the arbitrary
functional dependence of the isometric g, all infinitely
possible isotopic images f(x,gR) of a Riemannian
space R(x,g,R) are locally isomorphic to the latter, i.e.,
for each given metric g, ® ~ R for all infinitely possible
1 of Kadeisvili's Class I. This is first due to the
preservation by 1 of the axioms of I, as a result of
which the field R and its isotopic image R lose any
distinction at the abstract level [22]. Second, the local
isomorphism ® ~ R follows from the fact that, in
conjunction with the deformation of the metric
elements g, - g,,, = T,%g,» the corresponding unit has
been deformed by the inverse amount, I, = T#, =
(Tu“)'l, thus preserving the original geometric
characteristics. In particular, the isospace R is
isocurved, that is (unlike the case for the isoeuclidean
spaces), curvature exists in the original space and
persists under isotopy.

To have an idea of the various applications under
study with isoriemannian spaces, the diagonal isotopic
element

T = diag.(n, 20,2040, , n, >0, m=1,234
(3.4)

permits the representation of the locally varying speed
¢ = c,/n, of electromagnetic waves within physical
media, which occurs via the fourth component of the
isoline element

Pkt = tclkp, 7,0 g &t c=c¢,/nkm,T,.)
. 3.5

where g,, is the ordinary metric element and n, is the
familiar index of refraction. This permits a
gravitational treatment of the locally varying speed of
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light in interior conditions.

As an example, light propagating in our
atmosphere has a dependence on the density, and then
assumes yel different values when propagating in
water, glasses, ¢1c. It is evident that the representation
of the locally varying speed of light is not possible with
the Riemannian geometry or with its tangent
Minkowskian geometry. Also, the decrease of the speed
of light within inhomogeneous and anisotropic media
has novel effects, such as a shift of light frequency
toward the red, which cannot be predicted via the
Riemannian or Minkowskian geometries, but which is
quantitatively treatable in accordance with available
experimental data via the isogeometries [24].

. The representation technically occurs via the
isolight cone ds* = ax“g,,,d%” = 0 which is the image in
isospace of the deformed light cone in our space-time,
as generated by a locally varying speed of light. In a
way similar to the fact that the isosphere is a perfect
sphere in isospace (Paper I), the isolight cone is a
perfect cone in isospace (see ref. [24], Ch. 8, for details).
This occurrence is not a mere mathematical curiosity
because it is important for numerical applications, such
as the correct calculations of gravitational horizons. In
fact, the region outside these horizon is not empty, but
filled up instead by very large and hyperdense
chromospheres where it is well known that the speed of
light is locally varying with the density, temperature,
etc,, thus preventing the use of the conventional light
cone. Note that the conventional exterior motion in
vacuum is a particular case of the isoriemannian
geometry occurring for 1= 1.

In the first formulation of the isoriemannian
geometry [20], differentials of contravariant isofields %P
on ! where defined by df = (8%kdx = (3,R) T Hdk” = dX
= (aux)dx“, a9, = a/ax* The isodifferential calculus allows
us to introduce the following alternative definition

ax =(auxe)as(u =Tpp(apxﬂ)1“0d$<" =
= (g, R)dx, (36)
namely, isodifferential of isovector fields coincide

with ordinary differentials.
The isocovariant differential can be defined by

DR =38 + [P X dv, (37
with corresponding isocovariant derivative

ﬁgm =3, 8 faap o (3.8)
where the isochristoffel’s symbols are given by

FaB.Y = &(aa ng + ?)y gaﬁ = 33 Qay) = ryga. (3.9a)

[, = g0y, =08, g 1@ )P (390
and one should note the abstract identity of the
conventional and isotopic connections. The extension to
covariant isofields and covariant or contravariant
tensor isofields is consequential and it is hereon
assumed (see also [23).

The repetition of the proof of [2], pap. 80-81, yields
to the following:

Lemma 4 (Isoricci Lemma)

Under the assumed conditions, the isocovariant
derivatives of ail isometrics on isoriemannian spaces
are identically null,

8ply =0, @BY=1234. (3.10)

Despite the similarities with the conventional case,
the lack of equivalence of the Riemannian and
isoriemannian geometries can be illustrated via the
isotorsion (20}

b =Tl =B, (3.1
which is identically null for the isoriemannian geometry
here considered, but its projection in the original space
R is not necessarily nuil. Interior gravitational models
treated with the isoriemannian geometry are therefore
theories with null isotorsion but generally non-null
torsion as requested for a realistic treatment of
interior problems.

The occurrence also iliustrates the property,
verified at subsequent levels later on, that departures
from conventional geometric properties must be
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studied in the projection of isoriemannian spaces in the
original spaces because, when treated in their respective
spaces, the two geometries coincide. Stated in different
terms, when using the conventional Riemannian
geometry, exterior gravitation can only be studied in the
spaces R. On the contrary, when using the isogeometry,
interior gravitation can be studies in two different
spaces, the isoriemannian spaces f and their projection
into A.

Another way of identifying the differences
between the Riemannian and isoriemannian geometries
is by considering the following isotopic Newton
equations in isoriemannian space

Dk, v axe  axy
— = "~ raﬁ'y(;(' {/, ?1, ) b

DT ar ar a7

3.12)
where V = dx/dt =1°dx/dT, T is the proper isotime and
1°° the related isounit. The preceding equations must
then be compared with the conventional equations

Dxg  dvg dx®  dx¥
e e P il = . 3.13
Ds ds ds ds

It is evident that the latter equations are at most
quadratic in the velocities while the isotopic equations
are arbitrarily honlinear in the velocities, as it occurs
already in a flat space (Paper 1). Also, the latter
equations are local-differential while the former admit
nonlocal-integral terms.

We now introduce: the isocurvature tensor

I N T A N o

avy a
(3.14)

the isoricci tensor

Ry = BRbig: 319

the isocurvature isoscalar

R = g¥R,; = R (3.16)

the isoeinstein tensor

Santilli
Gy =Ry- 3 Ry 317
and the isotopic isoscalar
9 = gaﬂ st ( r paa r.ypB - rpaa rypsj =
= Pooaly’s (828 - g °). (3.18)

the latter one being new for the isoriemannian
geometry (see below).

Tedious but simple calculations then yield the
following basic properties of the isoriemannian
geometry:

Property 1: Antisymmetry of the last two
indices of the isocurvature tensor

RB

a v8

a 8y ' (3.19

Property 2: Symmetry of the first two indices
of the isocurvature tensor

Rogys = Roays (3.20
Property 3: Vanishing of the totally

antisymmetric part of the isocurvature tensor

Rfs + R + Ry = 0; (3.21)
Property 4: Isobianchi identity

Rbysto * Reoyts * Rolsory = 0 (3.22)

Property 5: Isofreud identity (see Freud [6] for
the original form, Pauli {13] for a subsequent treatment,
Rund [15] for a more recent presentation and Santilli [23],
Ch. 5, for a general review)

§%=R% = $8% R - $8%6 = 0% + 5, ¥%,,

(3.23)
where 6 is the isotopic isoscalar (7.18) and
26 " )
0% =-4+ ———g%,, (3.24a
3gaﬂfu

§90, = 4170 (83, [Py — 8 1,05 ) +
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+(8%5 8% - 8% @py)ryﬁs + gPY raay - gL,
(3.24b)

Note the abstract identity of the conventional
and isotopic properties. This confirms that the
conventional and isotopic geometries can be treated at
the realization—free level via one single set of axioms, as
desired.

The repetition of the proof of the Theorem of [12},
p. 321, leads to the following property first identified in
1988 [20] (see also [23) and which is here recovered via
the isodif ferential calculus.

Theorem 2 (Fundamental Theorem for
Interior Gravitation)

Under the assumed regularity and continuity
conditions, the most general possible isolagrange
equations E*® = 0 along an actual path P,on a (3+1)>-
dimensional isoriemannian space satisfying the
properties:

1) Symmetry condition

B = pha (3.25)
2) Contracted isobianchi identity
3) The isofreud identity

8% =R - 48P R - 18%6 = 09 + 3 ¥,

327
are given by
£%® =gg'(R® - 1g8R - 13%60) +pgFe-
_Q‘Daa = 0, (328)

where g'= (det )2 a and 8 are constants and
D38 js a source tensor. Fora = | and B = 0 the
interior isogravitation field equations can be written

39 = R - 45 - 4 §OO = 108 - 1 =

= O’(l(3 + ép VGPB' (3.&)

where a8 is a source tensor and Fop 15 a
stress-energy tensor.

Note the appearance in Eq.s (3.29) of the isotopic
isoscalar © in the L.h.s and of source terms in the rh.s,
the latter ones originating from the isofreud identity.
Additional studies not reported here for brevity (see 24},
Ch. 9) have shown that the the tensors 1%® is nowhere
null and of first order in magnitude. This illustrates the
principle of isoequivalence according to which under
the isonormal coordinates the isometric g is indeed
reduced to the tangent isominkowski metric i} = Tn, but
the source % cannot be rendered null.

A vector isofield 8% on R is said to be transported
by isoparallel displacement from a point m(x) on a
curve C on R to a neighboring point m{x + d%) on & if

DX = a%® + [P, Xeaxr = 0. (3.30)
or in integrated form
LR A
i) - Km) = [ T — —as. (331
% ds

The isotopy of the conventional case [12] then yield the
following:

Lemma 5:

Necessary and sufficient conditions for the
existence of an isoparalle! transport along a curve C
on a (3+\)-dimensional isoriemannian space are that
all the following conditions are identically verified
along €
RPsX® =0, RY.5=1234. (332)

Note, again, the abstract identity of the
conventional and isotopic parallel transport. Along
similar lines, we say that a smooth path %, on R with
isotangent v, = dx,/d5 is an isogeodesic when it is
solution of the isodifferential equations

axe  arY
+ Fapy
&G d&

Dk, v,

Ds @&

(3.33)

]
<o
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[t is easy to prove the following:

Lemma 6:

The isogeodesics of an isoriemannian space
are the curves verifying the isovariational principle

[k 8,7, .) BEEEI2 = o 334

Finally, w point out the property which is inherent
in the notion of isotopies as realized in this paper:

Lemma 7:

Geodesic trajectories in ordinary space remain
isogeodesics in isospace.

For instance, if a circle is originally a geodesic, its
image under isotopy in isospace remains the perfect
circle, the isocircle of Paper I, and the same happens
for other curves. As it is the case for all other aspects,
the differences between a geodesic and an isogeodesic
emerge when projecting the latter in the space of the
former. In fact, the projection of the isocircle in the
conventional space becomes an ellipse under the assume
topology (and can be a hyperbola when relaxing the
positive-definite character of 1) (23].

We can say in figurative terms that interior
physical media “disappear” under their isoriemannian
geometrization, in the sense that actual trajectories
under resistive forces due to physical media (which are
not geodesics of a Riemannian space) are turned into
isogeodesics in isospace with the shape of the geodesics
in the absence of resistive forces. This property is
inherent in the very conception of the isotopic Newton
equations, e.g., in representation (3.14), and it is only re-
expressed in this section in an isocurved space.

In summary, a basic question raised in this section
is: why use in interior problems the Riemannian
geometry with metric g(x) when the same axioms
permit metrics g(x, v, &, ..) with a more general
functional dependence in the velocities and other
variables as needed for interior conditions ? In fact, at
the abstract level we have the identities I =1, dx = g,
R(n,+x) = R(A,+%), and RAlx,gR) = R(x,gR) with
consequential unique abstract geometric axioms for

both spaces ® and ®. Within such a setting, # emerges
as a simpler realization of the Riemannian axioms, and

$ as a more general realization.
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