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Abstract

Lie’s theary in its current formulation is linear, local and canonical. As such, it is inapplicable to a
growing number of nonlinear, nonlocal and noncanonical systems in various fields. In this paper we
review and develop a generalization of Lie's theory proposed by R.M. Santilli in 1978 then at Harvard
University and today called Lie-Santilli isotopic theory or Isotheory for short. The latter theory is based on
the so-called isotopies which are nonlinear, nonlocal and noncanonical maps of any given linear, local and
canonical theory capable of reconstructing linearity, locality and canonicity in certain generalized spaces
and fields. The emerging Lie-Santilli isotheory is remarkable because it presever the abstract axioms of
Lie's theory while being applicable to nonlinear, nonlocal and noncanonical systems. We review the
foundations of the Lie-Santilli isoalgebras and isogroups; introduce seemingly novel advances in their
structure and interconnections; and show that be Lie-Santilli isotheory provides the invariance of all
infinitely possible, signature-preserving, nonlinear, nonlocal and noncanonical deformations of
conventional Euclidean, Minkowskian or Riemannian invariants. We finally indicate a number of
applications and identify rather intriguing open mathematical problems.

Kew words: Isotopies, Lie-Santilli isoalgebras, isogroups and isorepresentations.

Fundamentos de la Teoria Isotopica de Lie-Santilli

Resumen

En su formulacion actual, la teoria de Lie es lineal, local y canénica. Como tal, no es aplicable a un
creciente nimero de sistemas no lineales, no locales y no canoénicos en varios campos. En este trabajo
revisamos y desarrollamos una generalizacion de la teoria de Lie propuesta por R.M. Santilli en 1978,
quien en esos momentos se encontraba en la Universidad de Harvard. Hoy en dia esta teoria se denomina
Teoria Isotépica de Lie-Santilli o Isoteoria. Esta teoria esta basada en las llamadas isotopias que son
representaciones no lineales, no locales y no canénicas de una teoria lineal, local y canénica cualquiera
que sea capaz de reconstruir linealidad, localidad y canonicidad en ciertos espacios y campos
generalizados. La emergente Isoteoria de Lie-Santilli es notable porque preserva los axiomas abstractos de
la Teoria de Lie, siendo al mismo tiempo aplicable a sistemas alineales, no locales y no canénicos.
Revisamos los fundamentos de las isoalgebras e isogrupos de Lie-Santilli; introducimos avances de
estructura e interconexiones aparentemente originales, y demostramos que la Isoteoria de Lie-Santilli
proporciona la no varianza de todas las infinitamente posibles deformaciones -alineales, no locales, no
canbnicas y que preservan su configuracién- de las Invariantes Euclideanas, Minkovianas o
Riemanianas. Finalmente, sefialamos un numero de aplicaciones e identificamos algunos problemas
matematicos abiertos bastante interesantes.

Palabras clave: Isotopias, isoalgebras, isogrupos, isorrepresentaciones de Lie-Santilli.
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1. Introduction

1.A. Limitations of Lie’s theory. As it is well known,
Lie’s theory has permitted outstanding achievements in
various disciplines. Nevertheless, in its current
conception [30] and realization (see, e.g., [15), Lie’s theory
is linear, local-differential and canonical-Hamiltonian.
As such, it possesses clear limitations.

An illustration is provided by the historical
distinction introduced by Lagrange [29], Hamilton [(14]
and others between the exterior dynamical problems in
vacuum and the interior dynamical problems within
physical media. Exterior problems consist of particles
which can be effectively approximated as being point-
like while moving within the homogeneous and
isotropic vacuum under action-at-a-distance
interactions (such as a space-ship in a stationary orbit
around Earth). The point-like character of particles
permits the validity of conventional local-differential
topologies (e.g., the Zeeman topology in special
relativity), the homogeneity and isotropy of space then
allow the exact validity of the geometries underlying
Lie‘s theory (such as the Riemannian geometry}, and the
action-at-a-distance interactions assures Ltheir
representation via a potential with consequential
canonical character.

Interior problems consist of extended, and
therefore deformable particles moving within
inhomogeneous and anisotropic physical media, with
action-at-a-distance as well as contact-resistive
interactions (such as a space-ship during re-entry in
Earth's atmosphere). In the latter case the forces are of
local-differential type (e.g, potential forces acting on
the center-of-mass of the particle) as well as of
nonlocai-integral type (e.g., requiring an integral over
the surface of the body), thus rendering inapplicable
conventional local-differential topologies; the
inhomogeneity and anisotropy of the medium imply the
inapplicability of conventional geometries for their
quantitative treatment; while contact-resistive
interactions violate Helmholtz's conditions for the
existence of a potential (the conditions of variational
selfadjointness [49]), thus implying the noncanonical
character of interior systems.

We can therefore say that Lie’s theory in its

conventional linear, local and canonical formulation is
exactly valid for all exterior dynamical problems,
while it is inapplicable (and not “violated”) for the
more general interior dynamical problems on
topological, geometrical, analytic and other grounds.

" 1.B. The need for a suitable generalization of Lie’s

theory. Lies theory is currently applied to nonlinear,
nonlocal and noncanonical systems via their
simplifications into more treatable forms, e.g., via the
expansion of nonlocal-integral terms into power series
in the velocities and then the transformation of the
system into a coordinate frame in which it admit a
Hamiltonian via the Lie-Koening Theorem [49]

At times, however, nonlinear, nonlocal and
nonhamiltonian systems cannot be consistently reduced
or transformed into linear, local and Hamiltonian ones.
An illustration exists in gravitation. The distinction
between exterior and interior gravitational problems
was in full use in the early part of this century (see, e.g,,
Schwartzschild’s two papers, the first celebrated paper
[72] on the exterior problem and the second little known
paper [73] on the interior problem). The distinction was
then kept in early well written treatises in the field (see,
e.g. [4] [38]). The distinction was then progressively
abandoned up to the current treatment of all
gravitational problems, whether interior or exterior, via
the same local=dif ferential Riemannian geometry.

The above trend was based on the belief that
interior dynamical problems within physical media can
be effectively reduced to a collection of exterior
problems in vacuum (e.g, the reduction of a space—ship
during re—entry in our atmosphere to its elementary
constituents moving in vacuum).

It is important for this paper to know that Lhe
above reduction is mathematically impossible. For
instance, the so-called No-Reduction Theorems [54]
prohibit the reduction of a macroscopic interior system
(such as satellite during re-entry) with a monotonically
decreasing angular momentum, to a finite collection of
elementary particles each one with a conserved
angular momentum, and viceversa.

On geometrical grounds, gravitational collapse and
other interior gravitational problems are not composed
of ideal points, but instead of a large number of
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extended and hyperdense particles (such as protons,
neutrons and other particles) in conditions of total
mutual penetration, as well as of compression in large
numbers into small regions of space. This implies the
emergence of a structure which is arbitrarily nonlinear
{in coordinates and velocities), nonlocal-integral (in
various quantities) and non-hamiltonian (variationally
nonselfadjoint). Addit
ional insufficiencies of the current formulation of Lie's
theory and of its underlying geometries exist for the
characterization of antimatter, e.g., because of the lack
of a suitable (e.g., antiautomorphic) map which permits
the characterization of antimatter, first, at the
classical-astrophysical level, and then at the level of its
elementary constituents.

Similar occurrences have recently emerged in
astrophysics, superconductivity, theoretical biology and
other disciplines. These occurrences establish the need
for a generalization of the conventional Lie theory
which is directly applicable (i.e., applicable without
approximation or transformations) to nonlinear,
integro-differential and variationally nonselfadjoint
equations for the characterization of matter, and then
possesses a suitable antiautomorphic map for the
effective characterization of antimatter.

1.C: Santilli’s isotopies of Lie’s theory. In a seminal
memoir . 7] written in 1978 when at Harvard University,
Santilli proposed a step—by-step generalization of the
conventional formulation of Lie theory specifically
conceived for nonlinear, integro-differential and
noncanonical equations. The generalized theory was
subsequently studied by Santilli in ref.s (48H71), as well
as by a number of mathematicians and theoreticians,
and it is today called Lie~Santilli isotopic theory or
isotheory (see papers [1], [2], (8], [11}, [12], [16H23], [25), [32]
(33), [351H37), [40H43] monographs (3], [24], [31] (74] and
additional references quoted therein).

‘A main characteristic of the Lie=Santilli isotheory,
which distinguishes it from all other possible
generalizations, is its “isotopic” character intended (from
the Greek meaning of the word) as the capability of
preserving the original Lie axioms. More specifically,
Santilli's isotopies are maps of any given linear, local
and canonical structure into its most general possible

nonlinear, nonlocal and noncanonical forms which are
capable of reconstructing linearity, locality and
canonicity in certain generalized isospaces and isofields
within a fixed system of local coordinates.

The latter property is remarkable, mathematically
and physically, inasmuch as it permits the preservation

-of the abstract Lie theory and the transition from

exterior to interior problems via a more general
realization of the same theory.

Another main characteristic of the Lie—Santilll
isotheory is that of admitting a novel antiautomorphic
map, called isoduality, which has resulted to be
effective for the characterization of antimatter at the
classical as well as operator levels,

It should be indicated that Santilli [47] submitted
his isotopic theory as a particular case of a yet more
general theory today called Santilli’s Lie-admissible
theory or Lie-Santilli genotopic theory where the
term genotopic is used (in its Greek meaning) to
“induce configuration”, and interpreted in the sense of
violating the original Lie axioms, but inducing covering
Lie-admissible axioms.

This paper is written by a theoretical physicist for
mathematicians and it is solely devoted to the Lie-
Santilli isotheory. A study of the broader Lie-Santilli
genotheory is contemplated as a future work. In Sect, 2
we outline the methodological foundations of the
theory. The isotopies of Lie's theory are presented in
Sect. 3 jointly with new developments, such as a study
of the transition from the Lie-Santilli isogroups to the
corresponding isoalgebras. As an illustration of the
capabilities of the isotheory, we prove its “direct
universality” in gravitation, that is, the achievernent of
the symmetries of all possible gravitational metrics
(universality), directly in the frame of the experimenter
(direct universality). A number of fundamental open
mathematical problems will be identified during the
course of our analysis.

‘A comprehensive mathematical presentation of
the Lie-Santilli isotheory up to 1992 is available in
monograph [74]. A historical perspective is available in
monograph [31]. Recent mathematical studies on
isomanifolds (today called Tsagas isomanifolds) have
been conducted in ref. [75] which is a topological
complement of the algebraic studies of this paper.
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2. Isotopies and Isodualities of
Contemporary Mathematical Structures

2.A: Statement of the problem. Lie’s theory is the
embodiment of the virtual entirety of contemporary
mathematics by encompassing: the theory of numbers;
differential and exterior calculus; vector and metric
spaces; geometry, algebra and topology; functional
analysis; and ‘others. Santilli's isotopies of Lie’s theory
require the isotopic lifting of all these mathematical
methods.

The most recent isotopies of contemporary
mathematical methods has been published in this
Journal in three preceding papers by Santilli [71l To
avoid un—necessary repetition, we shall herein assume
the entirety of the content of these papers and refer to
them as I, Il and III (e.g, Sect. 1.3 or Eq. (I11.3.33).
Additional studies via a different type of isotopies are
available in monographs [61] together with numerous
applications. In this section we shall mainly recall
the fundamental notions, and refer to papers I, 11 and IIi
for all details.

2.B. Isotopies and isodualities of the unit. The
fundamental isotopies from which all others can be
uniquely derived are given Dy the liftings of the n-
dimensional unit 1 = diag. (1, 1, .., 1) of the current
formulation of Lie’s theory into a matrix 1 of the same
dimension of [, but with unrestricted functional
dependence of its elements in the local coordinates x,
their derivatives with respect to an independent
variable of arbitrary order, X, %, ... as well as any needed
additional quantity (47], [49b] [61a), [1-71], '

I = 1=lx%x%.). 2.1

The isotopies occur when 1 preserves all the topological
characteristics of I, such as nowhere-degeneracy, real-
valuedness and positive-¢ “initeness.

Once the unit is ger. . alized, there is the natural
emergence of the map (52| [53] [61ai, [I-71],

1 - 1=, (2.2

called by Santilli isoduality which provides an

antiautomorphic image of all formulations based on 1.

The above liftings were classified by the author
[22] into:

Class I (generalized units that are sufficiently
smooth, bounded, nowhere degenerate, Hermitean and
positive-definite, characterizing the isotopies properly
speaking);

Class H (the same as Class | although 1 is
negative-definite, characterizing isodualities};

Class III (the union of Class I and 11}

Class IV (Class Il plus singular isounits); and

Class V (Class IV plus unrestricted generalized
units, e.g., realized via discontinuous functions,
distributions, lattices, etc.).

All isotopic structures studied in this paper also
admit the same classification which will be omitted for
brevity. Hereon we shall generally study isotopies of
Classes I and I, at times treated in a unified way via
those of Class IIl whenever no ambiguity arises.
Santilli’s isotopies of Classes IV and V are vastly
unexplored at this writing.

2.C. Isotopies and isodualities of contemporary
mathematics. Lie’s theory is constructed over ordinary
fields F(a,+x) hereon assumed to be of characteristic
zero (the fields of real R, complex C and quaternionic
numbers Q) with generic elements a, addition a, +a,,
multiplication a,a, : = a,*a,, additive unit 0,a +0 =0 +
a= a3 and multiplicative unit [, axl =[xa=a, Vv a,3,,
ayeF.

The Lie-Santilli isotheory is based on a
generalization of the very notion of numbers and,
consequently of fields (see ref. [39), comprehensive
mathematical studies [59] and monographs [61] for
applications).

Consider a Class [ lifting of the unit [ of F, 1 =1
with 1 being outside the original set, 1 € F. In order for
1 to be the left and right unit of the new theory, it is
necessary to lift the conventional associalive
multiplication ab into the so—called isomultiplication
[47]

ab:=axb = asb:=axTxa=aTb, (23
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where the quantity T is fixed and called the isotopic
element. Whenever 1 = T™!, 1 is the correct left and
right unit of the theory, 1*=a=a*l =a, ¥ a€ F, in which
case (only) 1 is called the isounit. In turn, the liftings
I =1 and x =+ imply the generalization of fields into
the Class [ structure

Fi= (Go)]a = ak o=xTx1=T1), @24

called isofields, with elements a € F called isonumbers
(591

All conventional operations among numbers are
evidently generalized in the transition from numbers to
isonumbers. In fact, we have:a+b - a+b=(a+b
) a;*a, —~ a,;*3, = 3, Ta,=(a]a,)]; a! - &
=a'La/b=c - a’b=¢ a - af = alt,
etc. Thus, conventional squares a2 = aa have no
meaning under isotopy and must be lifted into the
isosquare a2 = a%a . The isonorm is

[3] = Ga) V21 = |a]1 eb, 25

where a denote the conventional conjugation in F and | a
| the conventional norm. Note that the isonorm is
positive—definite (for isofields of Class I), as a
necessary condition for isbtopies.

The isotopic character of the lifting 1 = 1 is
confirmed by the fact that the isounit 1 verifies all
axioms of 1,141+..s1 =1,171 =11 = 1, etc.

The isodual isofields are the antihomomorphic
image of fa,+3 induced by the map1 —1%9 = -1 and
are given by the Class Il structures

Pl = (@0ea®)|80=31¢ 0= xrox 0= - 7,10 = -7},
(26)

in which the elements a9 = al9 are called isodual
isonumbers. For real numbers we have nd = -n, for
complex numbers we have c® = -C, where C is the
ordinary complex conjugate, and for quaternions in
matrix representation we have q¢ = —q', where 1 is the
Hermitean conjugate.

It is to be observed that the imaginary number i is
isoselfdual, i.e., invariant under isoduality, i4 = =7 = i,
and the conjugation of a complex number is given by (n
+pm)d = nd + {9dmf = - o + (5->xX-m) = -n + im.

The isodual isosum is given by a® + 6% = (@ + B9, while
for the isodual isomultiplication we have a% «¢ b3 = 3d
T8¢ = -39T7H =(ab)d

An important property is that the norm of
isodual isofields is negative-definite,

fadfd = |3|1¢ = -1al. 27

The latter property has nontrivial implications. For
instance, it implies that physical quantities defined on
an Isodual isofield, such as time, energy, angular
momentum, etc., are negative-definite. For these
reasons, isodual theories provide a novel and intriguing
characterization of antimatter [61].

Note also that, as a necessary condition for
isotopies (isodualities) all isofields F(a,+*) (isodual
isofields F),%@a%+9) are isomorphic (antiisomorphic)
to the original field Fla,+*. The reader should be
aware that the distinction between real, complex and
quaternionic numbers is lost under isotopies because all
possible numbers are unified by the isoreals owing Lo
the freedom in the generalized unit [26).

As an illustrative example, the isounit used by
Animalu [1] for the representation of the Cooper pair in
superconductivity is given by

tN | a3 plyln) 940
1= Ie J et b 28)

where t represents time, N is a positive real constant,
and 4 and §| are the wavefunctions of the two
electrons of the Cooper pair with related orientation of
their spin. Animalu’s isounit (2.8) therefore represents
the nonlocal-integral contributions due to the wave
overlapping of the two electrons in the Cooper pairs.

We also recall the still more general genofields
[59], characterized first by an isotopy of conventional
fields, and then by the differentiation of the
isomultiplications to the right a>b = AxRxb from that to
the left a<b = axSxh, a>b = a<h, R # S. The important
property is that all abstract axioms of a field are
verified per each ordered isomultiplication thus
yielding one genofieid F>(a,+>) for the muitiplication
to the right and a different one <F(a+<) for the
multiplication to the left. The latter genofields are at
the foundation of the Lie-Santiili genotopic theory or
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genotheory for short with a Lie-admissible (rather
than Lie-isotopic) structure.

A still more general formu.lation is currently
under study via the hyperstructures (see, eg,
monograph [7]). In essence, the genotopic elements R and
S are irreducible and fixed in the genotopic products

-@>b and a<b. In the transition to the hyperstructure, the
genotopic element R and S assume finite or infinite and
ordered or non-ordered sets of values.

We finally recall the liftings characterized by the
generalization of the sum + and related additive unit 0,
eg.+—=++=+K+ 0=K»0,KeFla*b=a+K+b)
called pseudo isotopies [59], which do not preserve the
axioms of a field (e.g,, closure under the distributive law
is not verified under the conventional x or isotopic *
multiplication and the addition #). Thus,
pseudoisofields are not fields. For these and other
reasons (e.g., the general divergence of the
exponentiation), physical applications are restricted to
iso- and geno-fields, while the pseudoiso- and
pseudogeno-fields have a mere analytical interest at
this writing.

Despite the above advances, studies on the
isonumber theory need further investigations. To begin,
the entire conventional number theory (including all
familiar theorems on factorization etc.) can be
subjected to an isotopic lifting of Class I. Moreover, we
have the birth of new numbers without counterpart in
the current number theory, such as the isonumbers of
Class I1 (with negative—definite unit), of Class IV (with
singular isounits) and Class V (with distributions or
discontinuous functions as isounits). All the above
liftings then admit a further enlargement via the
differentiation of the multiplications to the right and to
the left, and then yet more general formulations via the
multivalued hyperstructures.

The isotopies and isodualities of fields outlined
above admit corresponding lifting of all conventional
mathematical quantities defiend on them, such as
vector and metric spaces, functional analysis, etc. for
which we refer for brevity to [611 [71]

One can begin to understand the vastity of the
Lie-Santilli isotheory as compared to the conventional
formulation of Lie’s theory by noting that the above
hierarchy of fields implies a corresponding hierarchy of

Lie-isotopic theories, which includes a corresponding
hietarchy of isospaces, isoalgebras, isogroups, etc.

3. Isotopies and Isodualities of Enveloping
Algebras, Lie Algebras, Lie Groups,
Symmetries, Representation Theory
and Their Applications

As recalled in Sect. |, Lie‘s theory (see [13] [15] and
(76D is centrally dependent on the basic n-dimensional
unit [ = diag. (1, 1, ..., 1) in all its major branches, such as
enveloping algebras, Lie algebras, Lie groups,
representation theory, etc. The main idea of the Lie-
Santilli theory (47}, [49], [61] [62] is the reformulation of
the entire conventional theory with respect to the most
general possible, integro—differential isounit 1(x, %, X, ....).

One can therefore see from the very outset the
richness and novelty of the isotopic theory. In fact, it
can be classified into five main classes as occurring for
isofields, isospaces, etc., and admits novel realizations
and applications, e.g., in the construction of the
symmetries of deformed line elements of metric spaces.

3.A. Isotopies and isodualities of universal
enveloping associative algebras. Let £ be a universal
enveloping associative algebra [15] over a field F (of
characteristic zero) with generic elements A, B, C,... ,
trivial associative product AB and unit . Their isotopes
t were first introduced in [47] under the name of
isoassociative envelopes. They coincide with § as
vector spaces but are equipped with the isoproduct so
as to admit 1 as the correct (right and left) unit

A*B = ATB,I*A = A=l = A VAL 1=TL
3.1)

Let € = £(L) be the universal enveloping algebra of
an N-dimensional Lie algebra L with ordered basis (X},
k=1,2.,N [ELI~L over F, and let the infinite-
dimensional basis of E(L) be given by the Poincaré-
Birkhof (~Witt theorem [151 A fundamental result due to
Santilli (471, [59] Vol. I1, p. 154-163) is as follows

Theorem 3.1. The cosets of 1 and the standard,
isotopically mapped monomials
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T, Xy XX, (s), X»X* Xy (i5js5K),
(32

form a basis of the universal enveloping isoassociative

algebra EL) of a Lie algebra L.

A first important consequence is that the isotopies
of conventional exponentiation are given by the
expression, called isoexponentiation, for w € F,

™% =1+ (X /1 (eX) s (oK) / 2+ o =

= 1™ )= (e XTW)], (3.3)

The implications of Theorem 3.1 also emerge at
the level of functional analysis because all structures
defined via the conventional exponentiation must be
suitably lifted into a form compatible with Theorem
3.1. As an example, Fourier transforms are structurally
dependent on the conventional exponentiation. As a
result, they must be lifted under isotopies into the
expressions (23]

) = (1/2m J_ " g« g ak,

=i\x

g = (/2m [ T e ax 34

with similar liftings for Laplace transforms, Dirac—delta
distribution, etc., not reviewed here for brevity.

On physical grounds, Theorem 3.1 implies that the
isotransform of a gaussian in isofunctional analysis is
given by [23]

flx)= N=e -xIZaz=Ne-x2T/232.,
t
~glk) = Neep K2a% 2= Ne - k2Ta? /2 35)

As a result, the widths are of the type Ax ~ aT !, Ak ~
a”'T™ . It then follows that the isotopies imply the loss
of the conventional uncertainties Ax Ak = | in favor of
the local isouncertainties [61b)

Ax Ak ~ 1, ' (3.6)

which illustrate the nontriviality of the the isotopy.

The isodual isoenvelopes t9 are characterized by
the isodual basis X, @ = - X, defined with respect to the
isodual isounits 19 = -1 and isodual isotopic element T4

= =T over the isodual isofields F9. The isodual isoex-

ponentiation is then given by

er,ldwdxdxd =™ = —eeiwx (37
and plays an important role for the characterization of
antiparticles as possessing negative—-definite energy and
moving backward in time (as necessary when using
isodual isofields).

It is easy to see that Theorem 3.I holds, as
originally formulated [47] for envelopes now called of
Class I1I, thus unifying isoenvelopes £ and their isoduals
24, In fact, the theorem was conceived to unify with
one single Lie algebra basis Xy nonisomorphic compact
and noncompact algebras of the same dimension N (see
the example of Section 3.E).

The isotopy &€ — & is not a conventional map
because the local coordinates x, the infinitesimal
generators X, and the parameters wy are not changed
by assumption, while the underlying unit and rtelated
associative product are changed. Also, in the operator

realization the Lie and Lie—Santilli isotheory can be

linked by nonunitary transformations UUT=1 =1, for
which

I = 1=uIul, aB —

—UABU' = A«B=ATH,T=(UUN)L (38
where A" = UAU', B’= UBU". The lack of equivalence of
the two theories is further illustrated by the
inequivalence between conventional eigenvalue
equations,

H|b>=E|b> H=H E € fln+»,

and their isotopic form in the same Hamiltonian [11-71]

He*|b> = HT|b> = E+|b>=E|B> H = HI,
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where E' € R(n+x , with consequential different
eigenvalues for the same operator H, E' # E (see Section
3E for an example). We therefore expect the weights of
the Lie and Li-Santilli theories to be different.

3.B. Isotopies and isodualities of Lie algebras. A
(finite-dimensional) isospace L over the isofield F of
isoreal R(f,+9 or isocomplex numbers with isotopic
element T and isounit 1 = T™! is called a Lie-Santilli
algebra over F (see the original contributions [47], [49],
[61), [62], independent studies (3], [24], [31], [74] and
references quoted ytherein), sametimes called
isoalgebra (when no confusion with the isotopies of
non-Lie algebras arises), when there is a composition
[A;Blin L, called isocommutator, which is isolinear (i.e.,
satisfies condition (2.40)) and such that for all A, B, Ce L

[A;B]l == [B/Al, (3.9a)

[A[Bcll + [B[Cc All +[C[A/BI]]l =0,
(3.90)
[A*B;Cl=aAs[B Cl+ (A C]*B. (3.9¢)

The isoalgebras are said to be: isoreal (isocomplex)
when F = R (F = C), and isoabelian when [A]B|=0V
A, BeL Asubset [, of L issaid to be an isosubalgebra
of L when (L, "LoI € Ly and an isoideal when [L L)
C L, A maximal isoideal which verifies the property [L,
“Lol = 0 is called the isocenter of L. For the isotopies of
conventional notions, theorems and properties of Lie
algebras see (74
We recall the isotopic generalizations of the
celebrated Lie's First, Second and Third Theorems
introduced in ref. [47], but which we do not review here
for brevit (see [43bl, [61b), [74). For instance, the isotopic
second theorem reads

[X,:X’] = X,‘Xj al XI'X, =

X Th ) X=X T D X =M & &, )= Xy, (3.10)
where the (s are called the structure functions,
generally have an explicit dependence on the underlying

isospace (see the example of Section 3.E), and verify
certain restrictions from the Isotopic Third Theorem.

Let L be an N-dimensional Lie algebra with
conventional commutation rules and structure
constants C,* on a space S(xF) with local coordinates x
over a field F, and let L be (homomorphic to) the
antisymmetric algebra [E(L)]” attached to the associative
envelope &(L). Then L can be equivalently defined as
(homomorphic to) the antisymmetric algebra [E(L)"
attached to the isoassociative envelope EL) (47 [49] [74).
In this way, an infinite number of isoalgebras L,
depending on all possible isounits 1, can be constructed
via the isotopies of one single Lie algebra L. It is easy to
prove the following resuit:

Theorem 3.2. The isotopies L — L of an N-
dimensional Lie algebra L. preserve the original
dimensionality.

In fact, the basise, , k=1, 2, .., N of a Lie algebra L is
not changed under isotopy, except for renormalization
factors denoted €. Let the commutation rules of L be
givenbyle e = CFe..

The isocommutation rules of the isotopes L are

[él:‘éj] - élTé] - é;Téi e C,jk(x.i,ﬂ....)ék. (43«“)

where £ = CT. One can then see in this way the
necessity of lifting the structure <constants> into
structure <functions>, as correctly predicted by the
Isotopic Second Theorem.

The structure theory of the above isoalgebras is
still unexplored to a considerable extent. In the
following we shall show that the main lines of the
conventional structure of Lie theory do indeed admit a
consistent isotopic lifting. To begin, we here introduce
the general isolinear and isocomplex Lie-Santilli
algebras denoted GL(n,C) as the vector isospaces of all
nxn complex matrices over C. It is easy to see that they
are closed under isocommutators as in the conventional
case. The isocenter of GL(n,C) is then given by a =1, v
a € A. The subset of all complex nxn matrices with null
trace is also closed under isocommutators. We shall call
it the special, complex, isolinear isoalgebra and denote
it with SL(n,C). The subset of all antisymmetric nxn real
matrices X, X' = - X, is also closed under
isocommutators, it is called the isoorthogonal algebra,
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and it is denoted with O(n).
By proceeding along similar lines, we classify all

classical, non-exceptional, Lie-Santilli algebras over an -

isofield of characteristic zero into the isotopes of the
conventional forms, denoted with A, By, €, and D,
each one admitting realizations of Classes I, I, III, IV
and V (of which only Classes I, I and Il are studied
herein). In fact, A,., = SLinCk B, = O2n+1, C}; C, =
SP(n,Ck and D, = O(2n,0). One can begin to see in this
way the richness of the isotopic theory as compared to
the conventional theory.

The notions of homomorphism, autormnorphism
and isomorphism of two isoalgebras L and L', as well as
of simplicity and semisimplicity are the conventional
ones. Similarly, all properties of Lie algebras based on
the addition, such as the direct and semidirect surms,
carry over to the isotopic context unchanged (because
of the preservation of the conventional additive unit 0).

An isoderivation D of an isoalgebra L is an
isolinear mapping of L into itself satisfying the property
D[A,B]) = [DXA);B] + [A/DB)] VABeL.

(3.12)
If two maps D, and D, are isoderivations, then asD, +
BsD, is also an isoderivation, and the isocommutators of
D, and D, is also an isoderivation. © s, the set of all
isoderivations forms a Lie-Santilli algebra as in the
conventirnal case.

The isolinear map ad(l) of L into itself defined by
ad AB) = [A7Bl, V ABelL, (3.13)
is called the isoadjoint map. It is an isoderivation, as
one can prove via the iso—Jacobi identity. The set of all
ad(A) is therefore an isolinear isoalgebra, called
isoadpoint algebra and denoted L, . It also results to be
an isoideal of the algebra of all isoderivations as in the
conventional case.

Let L9 =, Then LW =[ (0 g | L@ =[ g0 0]
etc, are also isoideals of L. [ is then called isosolvable
if, for some positive integer n, L = 0. Consider also the
sequence L) = L Ly = [Lg 0. Ly = [Ly LT,
etc. Then L is said to be isonilpotent if, for some
positive integer n, Lip) = 0. One can then see that, as in
the conventional case, an isonilpotent algebra is also

isosolvable, but the converse is not necessarily true.
Let the isotrace of a malrix be given by the
element of the isofield [61]

TrA = (TrA)l ef, (3.14)

where Tr A is the conventional trace. Then Tr(A+*B)
= (TFA)*(TrB)andTr(BAB™') = TF A Thus,
the TT A preserves the axioms of Tr A, by therefore
being a correct isotopy. Then the isoscalar product

(AB) = Tr[(AdX) = (Ad B) ], (3.15)

is here called the isokilling form. It is easy Lo see that
(A ;B is symmetric, bilinear, and verifies the properly
(AdX(Y) ,"Z) + (Y Ad X(2)) = 0, thus being a correct,
axiom-—preserving isotopy of the conventional Killing
form.

Let e ,k =1, 2 .., N, be the basis of L with one-
to-one invertible map ey — & to the basis of L. Generic
elements in L can then be written in terms of local
coordinates X, y,z, A =x'¢, and B=yl,, and

C=2z¢ = [ATBl = Xyl [g %) = x! xI Of &
: (3.16)
Thus,
[AQAB)IK = [A7BK = &K x'x], 317

We now introduce the isocartan tensor g of an
isoalgebra L via the definition
(A7B) =g x'y! yielding

B % %) = Ck TP @18

Note that the isocartan tensor has the general
dependence of the isometric tensor of Section 2.C, thus
confirming the inner consistency among the various
branches of the Isotopic theory. In particular, the
isocartan tensor is generally nonlinear, nonlocal and
noncanonical in all variables x, X, &, ... . This clarifies
that isotopic generalization of the Riemannian spaces
studied in tref. [60] R(x,g,R) = R(xgR), g = §s, x, &k, &, ..,
has its origin in the very structure of the Lie-isotopic
theory.
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The isocartan lensor also clarifies another
fundamental point of Section |, that the isotopies
naturally lead to an arbitrary dependence in the
velocities and accelerations, exactly as needed for
realistic treatment of the problems identified in Section
1, and that their restriction to the nonlinear dependence
on the coordinates x only, as generally needed for the
exterior (e.gl., gravitational) problem, would be
manifestly un-necessary.

The isotopies of the remaining aspects of the
structure theory of Lie algebras can be completed by
the interested reader. Here we limit ourselves to recall
that when the isocartan form is positive— (or negative-)
definite, L is compact, otherwise it is noncompact. Then
it is easy to prove the lollowing

Theorem 3.3. The Class 11 liftings L of a compact
(noncompact) Lie algebra L are not necessarily
compact (noncompact).

The identification of the remaining properties which
are not preserved under liftings of Class Il is an
instructive task for the interested reader. For instance,
if the original structure is irreducible, its isotopic image
is not necessarily so even for Class [, trivially, because
the isounit itsellf can be reducible, thus yielding a
reducible isotopic structure.

Let L be an isoalgebra with generators Xy and
isounit 1 ="T"! > 0. From Equations {3.7) we then see that
the isodual Lie-Santilli algebras (% of L[ s
characterized by the isocommutators

(3% B =0 o] =Gk xdy, )= =Tk
(3.19)
L and LY are then (anti) isomorphic. Note that the
isoalgebras of Class I1I contain all Class [ isoalgebras L
and all their isoduals [9. The above remarks therefore
show that the Lie—Santilli theory can be naturally
formulated for Class IlI, as implicitly done in the
original proposal [47]. The formulation of the same
theory for Class IV or V is however considerably
involved on technical grounds thus requiring specific
studies. )
The notion of isoduality applies also to
conventional Lie algebras L, by permitting the

identification of the isodual Lie algebras LY via the
rule [52] [53]

=yd d - -
[, X=X 1%, - x¢ 19x9, = - [x;, X, | =
= C‘jk @ xdk ' C”k(m = e Cuk. (3.20)

Note the necessity of the isotopies for the very
construction of the isodual of conventional Lie algebras.
In fact, they require the nontrivial lift of the unit [ = [¢
= (-1), with consequential necessary generalization of
the Lie product AB - BA into the isotopic form ATB -
BTA.

For realizations of the Lie=Santilli isoalgebras in
classical and operator mechanics, we refer the reader
for brevity to ref s (611 (11-71].

3.C. Isotopies and isodualities of Lie groups. A right
Lie-Santilli group G (see the original contributions (47},
[49], [61], [62] inependent monographs [3], [24] (31}, [74] and
papers quoted therein) on an isospace 3(xf) over an
isofield F, 1 = T™ (of isoreal R or isocomplex numbers
C), also called isotransformation group or isogroup, is
a group which maps each element x € 3(x,F) into a new
element x’ € 8(x,F) via the isotransformations x’ = Q=x =
OTx, T fixed, such that: (1) The map (U, x) = 0 = x of
GBx.F) onto S(xF) is isodifferentiable; 1«0 =0+1=
OvO0eGand (30, +(0,¢x)=(0,*0,) * x, V x € 3(x,F)
and 0, , 0, € G. A left isotransformation group is
defined accordingly.

The notions of connected or simply connected
transformation groups carry over to the isogroups in
their entirety. We consider hereon the connected
isotransformation groups. Right or left isogroups are
characterized by the following laws [47]

00 =1, OW)=0W) = O(w)*0lw) = 0w+ W),
OwW) *O(-w) =1, wePF. (3.21)

Their most direct realization of the isotransformation
groups is that via isoexponentiation (3.3),

0W) = TTge El "Xk = TTe El Wk -
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= UTTe™ ™) = (L™ ™ N, (322)

where the X's and w’s are the infinitesimal generator
and parameters, respectively, of the original algebra L.
Equations (3.22) hold for some open neighborhood of N
of the isoorigin of L and, in this way, characterize some
open neighborhood of the isounit of G. Then the
isotransformations can be reduced to an ordinary
transform for computational convenience,

x’ = Qsx = {ﬂket‘ Xk "Wk} ex = ([T eXc™k x,

(3.23)
with the understanding that, on rigorous mathematical
grounds, only the isotransform is correct.

Still another important result obtained in [47] is
the proof that conventional group composition laws
admit a consistent isotopic lifting, resulting in the
following isotopy of the Baker—Campbell-Hausdorff
Theorem )
{etx}v(eexhet"ﬁ', X=X+ Xp+ [ X T Xp V2 +

+ (X =X) IX T X k17 12+ .. (3.24)

Note the crucial appearance of the isotopic
element T(x, X, %, ..) in the exponent of the isogroup.
This ensures a structural generalization of Lie’s theory
of the desired nonlinear, nonlocal and noncanonical
form. For details see [49] and [74]

The structure theory of isogroups is also vastly
unexplored at this writing. In the following we shall
point out that the conventional structure theory of Lie
groups does indeed admit a consistent isotopic lifting.
The isotopies of the notions of weak and strong
continuity of [22] are a necessary pre-requisite. Let L be
a (finite-dimensional) Lie-Santilli algebra with (ordered)
basis {Xg) , k = I, 2 .., N. For a sufficiently small
neighborhood N of the isoorigin of L, a generic element
of G can be written

U(W) = n.k=[,2,..,N eE 'kak v (3-%)

which characterizes some open neighborhood M of the
isounit 1 of G. The map

181
8,03 = 0, +0,+0,7, (3.26)
for a fixed O, € G, characterizes an inner

isoautomorphism of G onto G. The corresponding
isoautomorphism of the algebra L can be readily
computed by considering the above expression in the
neighborhood of the isounit 1. In fact, we have

0'2 = 0, ‘02'01_] = 02 “Wle[ XzfX[ |+ 02,

(3.27)

The reduction of the isogroups to isoalgebras

requires the knowledge of isodifferentials dw = Tdw

and isoderivatives d/dw = ldw, under which we have
the following expression in one dimension:

a

i a_-0|“'=0 =Xve," |y = X (3:28)
w

where we have used the isodifferential dwy = Ty'dw,
and related isoderivative (Sect. 2.C).

Thus, to every inner isoautomnorphism of G, there
corresponds an inner isoautomorphism of L which can
be expressed in the form:

(L) = B wk. (3.29)

The isogroup G, of all inner isoautomorphism of G is
called the isoadjoint group. It is possible to prove that
the Lie-Santilli algebra of G, is the isoadjoint algebra L,
of L. This establishes that the connections between
algebras and groups carry over in their entirety under
isotopies.

We mentioned before that the direct sum of
isoalgebras is the conventional operation because the
addition is not lifted under isotopies (otherwise there
will be the loss of distributivity, see [59]). The
corresponding operation for groups is the semidirect
product which, as such, demands care in its
formulation.

Let G be an isogroup and G, the group of all its
inner isoautomorphisms. Let G° be a subgroup of G,,
and let A(@) be the image of g € G under G°,. The
semidirect isoproduct (XG°, of G and G°, is the
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isogroup of all ordered pairs
@ Nelg, A =(g=A@), Ask'), (3.30)

with total isounit given by 1, 1;) and inverse §, As)™ =
A7g™), A7), The above notion plays an important role
in the isotopies of the inhomogeneous space-time
symmetries outlined later on.

Let G| and G, be two isogroups with respective
isounits 1, and 1,. The direct isoproduct G,6G, of G,
and G, is the isogroup of all ordered pairs (§,, g), g, €
G,.8,€G,, with isomultiplication

~ ~ ~ -

(81, 82)%(27.82) = (g =8".8*8%), (331

total isounit (1, 1)) and inverse (§,7, 8,7). The isotopies
of the remaining aspects of the structure theory of Lie
groups can then be investigated by the interested
reader.

Let G be an N-dimensional isotransformation
group of Class I with infinitesimal generators Xy, k = |,
2, .., N. The isodual Lie-Santilli group &9 of G (52}, [53D
is the N-dimensional isogroup with generators X,% = -
Xy constructed with respect to the isodual isounit 19 = -
1 over the isodual isofield F9. By recalling that w € F =
w9 e F¢, w® = -w, a generic element of G4 in a suitable
neighborhood of 19 is therefore given by

- -
0%W%) = e’ W -ez"""‘ =-0W). (32
The above antiautomorphic conjugation can also be
defined for conventional Lie group, yielding the isodual
Lie group G of G with generic elements U%{w9) =
eEd:wﬂx = - g WX,

The symmetries significant for this paper are the
following ones: the conventional form G, its isodual G9,
the isotopic form G and the isodual isotopic form G¢.
These different forms are useful for the respective
characterization of particles and antiparticles in
vacuum (exterior problem) or within physical media
(interior problem).

It is hoped that the reader can see from the above
elements that the entire conventional Lie’s theory does
indeed admit a consistent and nontrivial lifting into the
covering Lie-Santilli formulation. Particularly

important are the isotopies of the conventional
representation theory, known as the isorepresentation
theory, which naturally yields the most general known,
nonlinear, nonlocal and noncanonical representations of
Lie groups. Studies along these latter lines were initiated
by Santilli with the isorepresentations of S0(2) and of
S0(3) (611, by Klimyk and Santilli Klimyk (27} and others.

A classical realization of the Lie-Santilli isogroups
can be formulated on the isotangent bundle T*E(r,3R), 8
= T8, with local chart a=(r¥, p), p=1,234,56 k=
1, 2, 3 and isounit [11-71]

1, = diag. 0, 1) (3.33)
the Hamilton—-Santilli equations

aH
QA = B o= PET,Y— (3.34
aav

where wH? is the familiar canonical Lie tensor. Eq.s
(3.34) can be isoexponentiated and, after factorization of
the isounit, can be written

- 2 "
alt) = (=%

wH*T,," (aH/3a") 8/3a° } al0),

(3.35)

where we have ignored the factorization of the isounit
in the isoexponent for simplicity.

An operator realization of the Lie-Santilli

isogroups is given by isounitary transformations x =

U=x on an isohilbert space 3¢ [II-71] with

}=alo) ={e

0«0 =0+0 =1, (3.-36)
with realization via an isohermitean operator H
0=§""=(e'"""'n. (3.37
fhe above classical and operator realizations are
also interconnected in a unique and unambiguous way

by the isoquantzation (Sect. 2.G).

'3.D. Santilli’s fundamental theorem on
isosymmetries. We are now equipped to review without
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proof the following important result [52], [61] and [62}

Theorem 3.5, Let G be an N-dimensional Lie group of
isometries of an m-dimensional metric or pseudo-
metric space S\xgF) over a field F

G: x =AW x, (x-y)t AlgA(x-y)m(x-y)tg(xy)
AlgA = AgAl =g. (3.38)

Then the infinitely possible isotopies ¢ of G of
Class 111 characterized by the same generators and
parameters of G and new isounits 1 (isotopic
elements T), automatically leave invariant the iso—
composition on the isospaces 3(x§F),g=Tg1=T",

Gx=AwWex(x-y)tsAtgAs(x-y) =

At =1g1, (3.39)

o

= (x-y)tg(x-y), Atgi = A

The ~direct wuniversal” of the resulting
isosymmetries for all infinitely possible isotopies g = g
is then evident owing to the completely unrestricted
functional dependence of the isotopic element T in the
isometric g = Tg. One should also note the insufficiency
of the so—called trivial isotopy

Xk e 4 X‘k = Xk1 s (3‘40)

for the achievement of the desired form-invariance. In
fact, under the above mapping the isoexponentiation
becomes

e, Mk = (MK TMI = (KN, @)
namely, we have the disappearance precisely of the
isotopic element T in the exponent which provides the
invariance of the isoseparation.

3.E. Isotopies and isodualities of the rotational
symmetry. We now illustrate the Lie-Santilli isotheory
with the first mathematically and physically significant
case, the isotopies of the rotational symmetry, also
called isorotational symmetry. They were first
achieved in [53] and then studied in details in [61] and
[62], including the isotopies of SU(2), their

Isorepresentations, the iso—Clebsh—-Gordon coefficients,
etc.

Consider the lifting of the perfect sphere in
Euclidean space E(r,8,%) with local coordinates r = (x, y,
2), and metric 8 = diag. (1, 1, 1) over the reals ®,

'rrz=r'8r=xx+yy+zz' (3.42)

into the most general possible ellipsoid of Class [II on
isospace ENr8.R), 6 = Ts, T = diag. (g, . 825, g3z M 1 =
§ A

r2=r'8r=xg y+ygny+tzgnz,

8'=8"gy =gt 1, 1, . %0, (3.43)

The invariance of the original separation r? is the
conventional rotational symmetry O(3). The isotopic
techniques then permit the construction, in the needed
explicit and finite form, of the isosymmetries O(3) of all
infinitely possible generalized invariants r? via the
following steps: (1) Identification of the basic isotopic
element T in the lifting 8 = 8 = T8 which, in this
particular case, is given by the new metric 8 itself, T =
8, and identification of the fundamental unit of the
theory, 1 = T™L; (2) Consequential lifting of the basic
field fi(n,+x) = A(n,+,*); (3) Identification of the isospace
in which the generalized metric 8 is defined, which is
given by the three-dimensional isoeuclidean spaces
Er8%),8 =T5,1 =T (4 Construction of the (X3)
symmetry via the use of the original parameters of O{3)
(the Euler's angles 8y, k = 1, 2, 3), the original generators
(the angular momentum components My = € r'p) in
their fundamental (adjoint) representation, and the new
metric 8; and (5) Classification, interpretation and
application of the results.

The explicit construction of O(3) s
straightforward. According to the Lie-Santilli theory,
the connected component SO(3) of O(3) is given by [53]

SOB3): = RO =r, RO =n.k=l,2.3¢Eleek -
= ([Ti=i25¢ ™M™1, (3.44)

while the discrete component is given by the
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isotaversions [loc. cit.] r'=f*r = 7r = - r, where 7 Is
the conventional inversion.

Under the assumed conditions on the isotopic
element T, the convergence of isoexponentiations is
ensured by the original convergence, thus permitting
the explicit construction of the isorotations, with
example around the third axis [53]

x" = xcos[65(g,gn) ! +

+ Y88 82) Fsinl6g(g), 820 ],

y' = -xgn (g gz2) Fsin(03(g, g20) ] +

+y coslO3(g) g0)t]

7' =2. (3.45)

(see [61b] for general isorotations). One should note that
the argument of the trigonometric functions as derived
via the above isoexponentiation coincides with the
isoangle of the isotrigonometry in E(r8,R) (see paper [60)
thus confirming the remarkable compatibility and
interconnections of the various branches of the the
isotopic theory.

The computation of the isoalgebras o(3) of O(3) is
then straighforward [53]. In fact, when My are assumed
to be in their regular representation we have [53]

o3): (M M1 = M T M; =M TM; = Cf*M,, (346)

where C; ¥ €k S ' 1 . The above isoalgebra
illustrates the explicit dependence of the structure
functions. The proof of the isomorphism 6(3) ~ o(3) was
done [loc. cit.] via a suitable reformulation of the basis
under which the structure functions recover the value
€x=€xl.

The isocenter of so(3) is characterized by the
isocasimir invariants

=1, @=M=MsM = Fim23MT M.

(3.47)

In hadronic mechanics [61] one of the possible

realizations is the following. The linear momentum
operator has the isotopic form

Pe*lE> = -190d> = -i1'v|§>.

(see [11-71] for a different realization). The fundamental
isocommutation rules are then given by

[rfp) = i8=i18), [rirl=(ppj=0.

However, in their contravariant form the coordinates
are given by ry =38y, r'. Asa result ¥;r, = 8 (where the
delta is the conventional Kronecker delta). In this case
the fundamental isocommutation rules are given by

[r-,,”pjl e is‘j=i15ij. [r;rjl = [p,:pjj =0,

namely, their eigenvalues coincide with the quantum
ones. The operator isoalgebra 0(3) with generators My =
€xyj Iy Py is then given by

0l3): [M; Ml = M TM-MTM =i§f M,

where &% = €1, namely the product of the algebra
is generalized, but the structure constants are the
conventional ones (see [61] for details). The above
results illustrates again the abstract identity of
quantum and hadronic mechanics.

Note the nonlinear-nonlocai-noncanonical
character of isotransformations (3.45) owing to the
unrestricted functional dependence of the diagonal
elements gy,. Note also the extreme simplicity of the
final results. In fact, the explicit symmetry
transformations of separation (3.43) are provided by just
plotting the given g, values into transformations (3.45)
without any need of any additional computation. Note
finally that the above invariance includes as particular
case the general isosymmetry O(3) of (the space-
component of) gravitation which, since it is locally
Euclidean, remains isomorphic to O(3).

As an example, the symmetry of the space-
component of the Schwartzschild line element is given
by plotting the following values

gn=0-Mn", gy =r2 gy = r’sin’e, (348

(see next section for the full (3+1)-dimensional case).
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Despite this simplicity, the implications of the
above results are nontrivial. On physical grounds, the
isounit 1 > 0 permits a direct representation of the
nonspherical shapes, as well as all their infinitely
possible deformations. By recalling that O(3) is a theory
of rigid bodies, O(3) results to be a theory of
deformable bodies [53] with fundamentally novel
physical applications in the theory of elasticity, nuclear
physics, particle physics, crystallography, and other
fields (611, (62D.

On mathematical grounds, we have equally
intriguing novel insights. To see them, one must first
understand the background isogeometry E!'(r8 %)
which unifies all possible conics in E(r,8,8) [61al, as
mentioned earlier. To be explicit in this important point,
the geometric differences between (oblate or prolate)
ellipsoids and (elliptic or hyperbolic) paraboloids have
mathematical sense when projected in our Euclidean
space E(r,3,R). However all these surfaces are
geometrically unified with the perfect isosphere in
Er3R).

These geometric occurrences permits the
unification of O(3) and O(2.1), as well as of all their
infinitely possible isotopes. In fact, the classification of
all possible isosymmetries ((3), achieved in the original
derivation (53], includes:

(1) The compact O(3) symmetry evidently for 8§ =8
= diag. (1, 1, 1}

(2) The noncompact O(2.1) symmetry evidently for
8 = diag. (1, 1, -1)

(3) The isodual 0%3) of 0(3) holding for & = diag. (-
L=l

(4) The isodual 0%2.1) of 0(2.1) holding for & = diag.
(=1,-1, 1%

(5) The infinite family of compact isotopes ({3) ~
OB with 1 >0for8 = diag. (b2 b2 bs?), by >0

(6) The infinite family of noncompact isotopes
O21) ~021) ford = diag. (b2 b2 - bg? )

(7) The infinite family of compact isodual isotopes
0% (3 ~0% @) for § = diag. (-b,2 -by% ~b? }

(8) The infinite family of isodual isotopes 04 (2.1) ~
09 (2.1)for 3 = diag(-b,2 -b,2 bs?).

Even greater differentiations between the Lie and
Lie-Santilli theories occur in their representations
because of the change in the eigenvalue equations due

to the nonunitarity of the map Indicated In Sect. I, from
the familiar form H{ = E°, to the isotopic form Hsjs =
E+) = E, E° * E), thus implying generalized weights,
Cartan tensors and other structures studied earlier.

The first differences emerge in the spectrum of
eigenvalues of &(2) and of2). In fact, the ol2) algebra on a
conventional Hilbert space solely admits the spectrum
M =0, 1,2 3(as a necessary condition of unitarity). For
the covering 0(2) isoalgebra on an isohilbert space with
isotopic element T = Diag. (g,), g55), the spectrum is
instead given by M = g;,™"/2 g,)"1/2 M and, as such, it
can acquire continuous values in a way fully
consistent with the condition, this time, of isounitarity.
For the general ((3) case see also the detailed studied of
refs[61]

Similarly, the unitary irreducible representations
of su(2) are characterize the familiar eigenvalues

Jab=Muy, Pyp=J(J+1)y, M=y 0, ..

J=0;% kL . (3.49)

Three classes of irreducible isorepresentation of
su(2) were identified in [63] which, for the adjoint case,

are given by the following generalizations of Pauli’s
matrices:
(1) Regular isopauli matrices

0 g 0=4
6|=A"( “ ) Gy = A'*( u )

g2 0 +igp 0

. 4 82 0 :

O3 = A ) (3.50a)
' 0 -gi

T=diag.(g);.82) A=detT = g, 82,>0,

[&..6,&"'%’ emak. (350b)
o3+ b>=2446> 62¢|b>= 34|6>.  (3500)

(2) Irregular isopauli matrices

[0 ) 0 -i
ay'= =0, 0y’ = =0y,
I 0 + 0

; g2 0 .
03 = ( )=A103, (351a)
0 -gy

Rev. Téc. Ing. Univ. Zulia. Vol. 20, No. 3, 1997



186

Kadeisvili

(665 k=2id3,
[dp03 k=2ia0), [63,6) p=21467.351b)

d3*|b>=+Ab>,

G2|b>= Al a+2|b>. (351c)
(3) Standard isopauli matrices
0 A 0 -i)
&J= » &2 = ]
b izl oo
X oo
og = n (3.52a)
0 =X
T = diag. (A, 271), A%0, A=detT =1,
[6"1.&"}]3 =i€ijk6"k_. {3.52b)

&3+|b>=t|b>, & %|b>=3|b>. (35%)

The primary differences in the above
isorepresentations are the following. For the case of the
regular isorepresentations, the isotopic contributions
can be lactorized with respect to the conventional Lie
spectrum. For the irregular case this is no longer
possible. Finally, for the standard case we have
conventional spectra of eigenvalues under a generalized
structure of the matrix representations, as indicated by
the appearance of a completely unrestricted, integro—
differential function A.

The regular and irregular representations of &(3)
and su(2) are applied to the angular momentum and spin
of particles under extreme physical conditions, such as
an electron in the core of a collapsing star. The
standard isorepresentations are applied to conventional
particles evidently because of the preservation of
conventional quantum numbers. The appearance of the
isotopic degrees of freedom then permit novel physical
applications, that is, applications beyond the capacity of
Lie’s theory even for the simpler case of preservation of
conventional spectra (see Section 3.G).

The spectrum-preserving map from the
conventional representations Jg of a Lie-algebra L with
metric tensor g to the covering isorepresentations Jg of
the Lie-Santilli algebra L with isometric g = Tg and
isounit1 =T ! s important for physical application. It

is called the Klimyk rule[27] and it given by
3§=JgP, P=k1l, kefF, (3.53)

under which Lie algebras are turned into Lie-Santilll

- isoalgebras

Jidj = dpdi =GRy = (30 - eI T =

= Rk Ty,
that is,
Ji'aj—:}j'ai =Cijk3k.

thus showing the preservation of the original structure
constants.

However, by no means, the Klimyk rule can
produce all Lie-Santilli isoalgebras, because the latter
are generally characterized by nonunitary transforms
of conventional algebras, with a general variation of the
structure constants.

Nevertheless, the Klimyk rule is sufficient for a
number of physical applications where the preservation
of conventional quantum numbers is important,
because it permits the identification of one specific and
explicit form of standard isorepresentations with
“hidden” degrees of freedom represented by the isotopic
element T available for specific uses. For instance, the
standard isopauli matrices permit the reconstruction of
the exact isospin symmetry in nuclear physics under
electromagnetic and weak interactions [63], or the
construction of the isoquark theory with " all
conventional quantum numbers, yet an exact
confinement (with an identically null probability of
tunnel effects for free quarks because of the
incoherence between the interior and exterior Hilbert
spaces) [68] and other novel applications.

3.F. Isotopies and isodualities of the Lorentz and
Poincare” symmetries.

Consider the line element in Minkowski space X = x4 )
vX¥, I v =1, 2 3, 4, with local coordinates x = { x!, x2,
x3, x4}, x4 = cot, and metric n = diag. (1 1, 1, -1). Its
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simple invariance group, the six-dimensional Lorentz
group L(3.1), is characterized by the (ordered sets of)
paramelers given by the Euler’s angles and speed
parameter, w={wg }={6 v} k = 1,2 ..,6 and
generators X = { Xg } = { My, ) in their known
fundamental representation (see, e.g., (311, (32).

Suppose now that the Minkowskian line element is
lifted into the most general possible nonlinear—integral
form verifying the conditions of Class IIl

2 =  Guylx, %, &, .0 %Y, det g # 0, g=g!,

(354)
which represent: all modifications of the Minkowski
metric as encountered, e.g, in particle physics;
conventional exterior gravitational line elements with g
= §(x), such as the full Schwartzschild line element; all
its possible generalizations for the interior problem;
etc.

The explicit form of the simple, six-dimensional
invariance of generalized line element x* was first
constructed by Santilli [51] by following the space-time
version of Steps | to 5 of the preceding section. Step | is
the identification of the fundamental isotopic element
T via the factorization of the Minkowski metric, g = T
which, under the assumed conditions, can always be
diagonalized into the form

T = diag. (g)).822.933.844) T = T!, detT # 0
] (3.59)
The fundamental isounit of the theory is then given by
1=1"\

Step 2 is the lifting of Lhe conventional numbers
into the isonumbers via the isofields f(f,+*), 0 = n 1
(which are different than those of O{3) because of the
different dimension of the isounit).

Step 3 is the construction of the isospaces in
which the isometric g is properly defined, which are
given by the isominkowski spaces M(x,gf). The reader
should keep in mind that, when g is a conventional
Riemannian metric, isospaces M(x,g#®) are not the
Riemannian spaces R(x,g ) because the basic units of
the two spaces are different.

Step 4 is also straightforward. The Lorentz-
Santilli isosymmetry L(3.1) is characterized by the

187
isotransformations
0B.1): x* = AWs*x = Alwx, (356)
verifying the basic properties
ATga = Agial =1§1, or
AfgA = AgAr = g, (357a)
DétA = [Det (AT = #1. (3.57b)

It is easy to see that L(3.1) preserves the original
connectivity properties of L(3.1) {see [61] for a detailed
study). The connected component SO(3.1) of L(3.1) is
characterized by Dét A =+ and has the structure [ioc.
cit)

= iXp = N
Aw) = TTke12..66 ¢ & =

iXkTWk”' (3.58)

= [lk=12..6¢
where the parameters are the conventional ones, the
generators Xy are also the conventional ones in their
fundamental representation and the isotopic element T
is given by Equations (3.23). The discrete part of L(3.1) is
characterized by Det A = -1, and it is given by the
space-time isoinversions (loc. cit.]

fex =wx=-r,x), Fex=1x=(r,-x4).
(3.59)

Again, under the assumed conditions for T, the
convergence of infinite series (3.58) is ensured by the
original convergence, thus permitting the explicit
calculation of the symmetry transformations in the
needed explicit, finite form. Their space components
have been given in the preceding Section 3.E. The
additional Lorentz-Santilli isoboosts can also be
explicitly computed, yielding the expression for all
possible isometrics g (511

x'V=xl, x'2=x2 (3.60a)

x'3= Bcoshlv(ggygeq) 1 -
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-~ x*844(833840) " sinh [v (g3 g4g ) F 1=

= F(x3 - gy 2g,12px4), (3.60b)
x" 4= =3 gay (gaggee) Hsin [v(gaygee) ] +

+ xtcosh [ v(gggy)tl=

= F(x4 - gg2g,7V283), (3.60¢)

where x! = cot, B = v/c,

B = vRgk vk /o844 o, (3.61a)
cosh(v(gazgeq)tl = ¥ =(1 - P2,
sinh[v(g33g4q) ] = BY. (3.61b)

Again, one should note: (A) the unrestricted
character of the functional dependence of the isometric
g (B) the remarkable simplicity of the final results
where by the explicit symmetry transformations are
merely given by plotting the values Buy in Equations
(3.60%; and (C) the generally nonlinear-nonlocal-
noncanonical character of the isosymmetry.

The isocommutation rules when the generators
Muv are in their regular representation can also be
readily computed and are given by [loc. cit.]

ol3.1): [Myy Mggl = 8va Mgy ~ §ua May -

- 28 Map + 83 Mgy (362

with isocasimirs

c®=1, ¢ =ym;, TMY = MsM - NN,

(3.63a)

A = y PO M, TMyg = ~M*N, M =

= {M)2,Mp3 M3, }, N = (Mg, Mg2, M3} (3.63)
The classification of all possible isotopes SO(3.1)

was also done in the original construction [51] via the
realizations of the isotopic element

T = diag. (£bj% £ bp? , £ b3%, £ by?), by >0
(3.64)
where the b’s are the characteristic functions of the
interior medium, resulting in:
(1) The conventional orthogonal symmetry SO{(4)

- for T =diag. (I, I, I, =1}

(2) The conventional Lorentz symmetry SO(3.1) for
T = diag. (1, 1, 1, 1);

(3) the conventional de Sitter symmetry SO(2.2) for
T =diag. (1, I, =1, 1},

(4) the isodual S0%4) for T = diag. (-1, -1, -1, 1)

(5) the isodual 09(3.1) for T = - diag. (1, 1, I, 1}

(6) the isodual S0%2.2) for T = diag. (-1, -1, 1, =1}

(7) the infinite family of isotopes SO(4) ~ SO{4) for
T = diag. (b2, by?, bs? ~bg? }

(8) the infinite family of isotopes SO(3.1) ~ SO(3.1)
for T = diag. (bj2, by2, bg? b );

(9) the infinite family of isotopes
s0(2.2) ~ S02.2) for T = diag. (=bj2, bp?, bg? bg? )

(10) the infinite family of isoduals SO%4) ~ S0%4)
for T = diag. (-b;2, -bo?, -bs2 bg? )

(11) the infinite family of isoduals SO%3.1) ~ SO(3.1)
for T =-diag. (b2, b22. D32 ,bg?)

(12) the infinite family of isoduals S09(2.2) ~
s0%2.2) for T = diag. (bj2, -by2 —bs?, ~bg?).

On the basis of the above results, Santilli [61]
submitted the conjecture that all simple Lie algebra of
the same dimension over a field of characleristic zero
In Cartan classification can be unified into one single
abstract isotopic algebra of the same dimension.

The above conjecture was proved by Santilli for
the cases n = 3 and 6. A theorem unifying all possible
fields into the isoreals was proved by Kadeisvili et al [26]
in the expectation of such general unification, but its
study has remained unexplored at this writing.

In the above presentation we have shown that the
lifting of the Lorentz symmetry can be naturally
formulated for Class II1. Nevertheless, whenever dealing
with ‘physical applications, the isotopic element is
restricted to have the positive— or negative-definite
structure T = zdiag. (b2, bp?, b3 bg?), thus
restricting the isotopies to SO(3.1) ~ S0(3.1) and S093.1) ~
so%3.1).

The operator realization of the latter Lorentz~
Santilli isoalgebra is the following. The linear four-
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momentum admits the isotopic realization [11-71]
Pucld> = -ig ld> = -1 8, |d>.

Also, for x = rw,x” (where m is the conventional
Minkowski metric). one can show that &, xy, = fj,,. The
fundamental relativistic isocommulation rules are then
given by (61} [65)

eyl = iy, Duixl = opl = 0,

The isocommutation rules are then given by

o3.0: [Myy "Mgp | = i (fyq May ~ Tyua May -

= T Map *+ g May ) » (362
thus confirming the isomorphism SO(3.1) ~ SO(3.1) for all
pasitive—definite T.

The Poincaré-Santilli isosymmetry
P31 = LE)xT3.1), (3.69)

and its isodual P4(3.1) have been been constructed in
their classical [62] and operator [62] forms as well as in
their isospinorial form 2(3.1) = SL2.CxT(3.1) (691 We
here limit ourselves to a brief outline of the
nonspinorial case mainly to illustrate the advances in
the structure of isoalgebras and isogroups studied in
this paper.

A generic element of P3.1) can be written A = ( 4,
a) A e®3.1), @ € T3.1) with isocomposition
Ash = (£,3)%(A2) =(A=K,a + Ava),

(3.66)

The realization important for physical applications
is that via conventional generators in their adjoint
representation for a system of n particles of non-null
mass'my

X = {Xg} = {Myy = Yaxa Pay ~Xav Pay )
P=2apal.k=12.10 (3.67)

and conventional parameters w = {wy} = (v, 6, a}, where

v represents the Lorentz parameters, 6 represents the

“ Euler’s angles, and a characterizes conventional space-

time transiations.
The connected component of the isopoincaré

group is given by

B3al: x = Aex,
A= H‘kegixk Wk = ]'[keikawkl'l. (3.68)

where the isotopic element T and the Lorentz
generators M,,,, have the same realization as for O{3.1).
The primary different with isosymmetries (3.1) is the
appearance of the isotranslations

N3N ex = (eEiPna}=x = ee1péal-x= X +a,

TE1ep = 0. (3.69)

The general Poincaré-Santilli isotransformations are
then given by (61], (62D

x* = Rsx Lorentz-Santilli isotransf. , (3.70a)
X' = x+ agBls x X &..), isotransl. , (3.700)
x*=fp*x = (-r,x%), spaceisoinv., (3. 70¢)

x*=dgex = (r,x4),  timeisoinv., (3.70d)

where the B-functions are given by the expansions
B'_l = ql + a“[qlfPa]/ll +
+ 2%ty JPq I R l/ 2+ .. @71

The isocommutation rules of (3.1} in the operator
realizations indicated earlier are

(Muy ‘Mgg | = i (Tq May = yua May -
_ﬁlﬁMﬂu+ﬁiﬁMﬂV)v (37%)

{Muv:Pa] = |(f]_lapv = ﬁmpu),
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(Pu Pyl =0,1vaB=1234 (3.72b)
and the isocenter is characterized by the isocasimirs

d =1, dV=p=pTP=p,§p,, 67
2= w2 = W gvw, , (3730)
Wy = €uapp PP PP. (3.73¢)

The restricted isotransformations occur when the
isotopic element T is constant.

An important application of the isotranslation is
the characterization of the so—called isoplane-waves
on M(x,7,8)

Ux) = eEipx =1¢'PT* - 1eip“§wx" =

=1ei(qu<2xk'P4b42x4)_ (3.74)

which are solutions of the isotopic field equations,
represents electromagnetic waves propagating within
inhomogeneous and anisotropic media such as out
atmosphere and offer quite intriguing predictions for
experimentally verifiable <novel> effects, that is,
effects beyond the predictive or descriptive capacities
of the Poincaré symmetry (see the companion paper
[60D.

As one can see, the verification of total
conservation laws (for a system assumed as isolated
from the rest of the universe), is intrinsic in the very
structure of the isosymmetry. In fact, the generators
are the conventional ones and, since they are invariant
under the action of the group they generate, they
characterize conventional total conservation laws. The
simplicity of reading off the total conservation laws
from the generators of the isosymmetry should be
compared with the rather complex proof in
conventional gravitational theories.

The isodual Poincaré-Santifli isosymmetry PA(3.1)
is characterized by the isodual generators xkd =~ Xk,
the isodual parameters wgd = - wy , and the isodual
isotopic element Td = =T, resulting in the change of
sign of isotransforms. This implies a novel law of
universal invariant under isoduality which essentially

state that any system which is invariant under a given
symmetry is automatically invariant under its isodual.
In turn, this law apparently permits novel advances in
the study of antiparticles [61]

The significanmce of the Lie—Santilli isotheory for

- gravitation is illustrated by the following important

property of the isosymmetry P(3.1) which evidently
follows from of Theorem 3.5

Theorem 3.6 [SIL The Poincaré-Santilli isosymmetry
P(3.1) is directly universal for all infinitely possible
(3+1)-dimensional invariants

(x-y Pk x-yV, §=Tn, (79

Note that the above theorem includes as particular
cases the conventional Riemannian metric g(x) = f(x),
thus providing the universal invariance of exterior
gravitation in vacuum. More generally, the theorem
includes all infinitely possible signature-preserving
modifications of the Minkowski and Riemannian
metrics for interior problems. The simplicity of this
universal invariance should also be kept in mind and
compared with the known complexity of other
approaches to nonlinear symmetries. In fact, one
merely plots the guy elements in isotransforms (3.45),
(3.60), (3.70) without any need to compute anything,
because the invariance of general separation (3.75) is
ensured by the theorem. For numerous examples, see
611 [62L

As anticipated in Sect. 1.E, a remarkable property
of the Lie-Santilli theory is the capability to unify in
one, single, abstract isosymmetry P(3.1) all possible
linear or nonlinear, local or nonlocal, Hamiltonian or
nonhamiltonian, relativistic or gravitational, exterior
and interior, classical and operator systems.

3.G: Mathematical and physical applications. Lie's
theory is known to be at the foundation of virtually all
branches of mathematics. The existence of intriguing
and novel applications in mathematics originating from
the Lie=Santilli theory is then self-evident.

With the understanding that mathematical studies
are at their first infancy, the isotopies have already
identified new branches of mathematics besides
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isoalgebras, isogroups and isorepresentations. We here
mention: the new branch of number theory dealing with
isonumbers; the new branch of functional isoanalysis
dealing with T-operator special isofunctions,
isotransforms and isodistribution; the new branch of
topology dealing with the peculiar integro-differential
topology of the isotopic theory; the new branch of the
theory of manifold dealing with isomanifolds and their
intriguing properties; and so on. It is hoped that
interested mathematicians will contributed to these
novel mathematical advances which have been
identified and developed until now solely by physicists.

Lie’s theory in its traditional linear-local-
canonical formulation is also known to be at the
foundation of all branches of contemporary physics.
Profound physical implications due to the covering,
nonlinear—-nonlocal-noncanonical Lie-Santilli theory
cannot therefore be dismissed in a credible way.

With the understanding that these latter
applications too are at the beginning and so much
remains to be done, let us recall the following
applications of the Poincaré=-Santilli iscsymmetry 3.1)
(see [61] and [62] for details):

(1) The universal invariance of all possible
conventional gravitation {511

(2) The geometric unification of the special and
general relativities. In fact, the abstract isotope P(3.1)
unifies the isosymmetry with gravitational isounit 1 =
[T6I™!, g(x) = T(x)n, and the realization with isounit [ =
diag. (1, 1, I, 1) characterizing the special relativity [51]

(3) The universal invariance for all possible
interior extensions of relativistic and gravitational
theories [51] '

(4) Reconstruction at Llhe isotopic level of the
exact SU(2)-isospin symmetry under electromagnetic
and weak interactions via the use of the standard
isopauli matrices (352) with A% = mgy/mp, [63}

(5) Quantitative representation of Rauch’s
interferometric measures on the 4m-spinorial symmetry
via the isotopies of Dirac’s equation invariant under
#(3.1) [69k

(6) First numerical representation of the total
magnetic moment of few-body nuclei via the SO(3)
symmetry and its direct representation of the
deformation of the charge distribution of nucleons and

consequential alteration of their intrinsic magnetic
moments [69}

(7) Nonlocal representation of the Bose-Einstein
correlation from first isotopic principles in full
numerical agreement with the data from the UAI
experiments, while permitting a causal description of
nonlocal interactions and the reconstruction of their
exact Poincaré symmetry at the isotopic level (58] (8l;

(8) Quantitative representation of the electron
pairing in superconductivity [1}

(6) Quantitative-numerical representation of the
behaviour of the meanlives of unstable hadrons with
speed (which, as well known, are anomalous between 30
and 100 GeV and conventional between 100 and 400 GeV
for the K°-system) via the isominkowskian
geomelrization of the physical medium in their interior
(el, 71y

(9) Application to quarks theories via Klimyk rule
for the standard isorepresentations of SO0(3) with
conventional quantum numbers with exact confinement
of quarks (permitted by the incoherence of the interior
isohilbert and exterior Hilbert spaces), and other
intriguing possibilities, such as the regaining of
convergent perturbative series for strong interactions
(which is possible whenever | T | < 1) (68}

(10) Numerical representation of Arp’s measures on
quasars redshift as being due to the decrease of speed of
light in chromospheres and its isominkowskian
geometrization [37}

(1) Numerical representation of the joint redshift
and blueshifts of pairs of quasars, particularly when
proved via gamma spectroscopy to be physically
connected to the associated galaxies, and prediction of a
measurable isominkowskian redshift for sunlight at
sunset [67L

(12) Application to local realism via the proof that
Bell's inequality, von Neumann's theorem and all that
are inapplicable (rather than “violated} under isotopies
(evidently because of the nonunitary structure of the
lifting), thus permitting an isotopic completion of
quantum mechanics much along the celebrated E-P-R
argument [65}

" (13) Application to q-deformations, discrete time
theories and other ongoing studies via their
axiomatization into a form invariant under their own
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time evolution and which coincide with the
conventional quantum mechanical axiomatization at the
abstract level [33k and other applications (see
monographs [61] and [62}

(14) Novel possibilities in theoretical biology, such
as a quantitative representation of the growth of sea
shells which, according to computer simulations, crack
during their growth is subjected to the conventional
Minkowskian geometry, while admit a normal growth
under the covering isominkowskian geometry of Class
ITI (the latter one being needed to represent bifurcations
which require inversions of time) (601
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