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Abstract

We consider linear systems with symmetric positive definite matrices. For those problems we
present a new method for estimating a posteriori the error produced by a numerical solution. The method
is especially intended for large sparse systems. This approach has been applied successfully to linear
systems arising in process simulation with the conjugate gradient method as underlying scheme.
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Limites numeéricos para la solucion de sistemas
lineales con matrices simétricas definidas positivas

Resumen

Consideramos sistemas lineales con matrices simétricas definidas positivas. Para esos problemas
presentamos un nuevo método para estimar a posteriori el error producido por una solucion numérica. El
meétodo esta dirigido especialmente a sistemas sparse grandes. El método propuesto ha sido aplicado
exitosamente a sistemas lineales que aparecen en procesos de simulacién con el método del gradiente
conjugado como esquema fundamental.

Palabras clave: Sistemas lineales, matrices simétricas, sistemas sparse grandes, gradiente
conjugado, estimacién del error.

1. Introduction The utilization of (1.2) requires both the
knowledge of the defect and of the inverse AL
While the precise computation of AX —b is possi-
ble with an appropriate computer arithmetic (cf.

We consider linear systems

Ax=b, (1.1) Kulisch/Miranker{1]), the computation of a reli-
able inverse A’ poses some difficult questions
with x,b € ®" and nonsingular A ¢ R™". and is therefore often ignored in practice.

Throughout this paper we assume that A is sym-
metric and positive definite (SPD). Furthermore it
is supposed that A is a sparse matrix of large di-
mension n without a band structure. If we know papers treating this aspect and most of them

an approximate solution ¥ for the unknown x, make use of a decomposition of A (see Rump [2],
then we get an a posteriori error bound by Cordes/Kaucher(3]).

Numerical methods providing additionally,
to a computed solution, safe error bounds are
called validating schemes. There are only a few

Some schemes (see Kaucher/Rump [4]) for

|- %)= “A Aax- b‘\ ; a.2) validating however require the explicit knowledge
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of an approximate inverse for A and are there-
fore not practicable for large sparse matrices.
Other papers for condition estimation (cf. Arioli et
al [5], Guang-yao [6]) are yielding estimations
rather than guaranteed bounds.

The paper is organized as follows. In the
next section we present the basic theoretical re-
sults. These results are used in section 3 to derive
a new method for determining bounds on ”A‘H

within a computational framework. In the last
section we discuss aspects of realization and re-
port about numerical tests.

2. Obtaining bounds on |A|

Our goal is to compute a good bound for
[x — %|| with a small amount of work and storage.
For this purpose we define with a parameter
w > 0 the Richardson operator

R, =1 - wA, (2.1)
where I denotes the identity matrix.

Theorem 2.1

Let A be a SPD matrix and w be chosen
such that

0<w<2 (2.2)
4
then
IR <1 (2.3)
Proof

Since A is a SPD matrix, there exists posi-
tive constants m,M with

mix, x) < (Ax, x) < M(x, x), (2.4)
where (x,x) = x'xis chosen as inner product and

M= |4

as corresponding matrix norm. Consider

m(R,) = ;‘.’;‘fl (R,x, x)

and

MR,) = :!atlxp (R,x. x),
xj=1

together with (2.4) we deduce
miR,) =1-wM ,
resp.
MR, =1-wm.
From

[R.] = max{m(®,), [M®R,)}

it is easy to show that (2.3) is satisfied, if (2.2)
holds.

The reverse of Theorem 2.1 is also true:

If (2.3) holds, then A is a SPD matrix and
(2.2) is satisfied.

Since A is nonsingular the unique solutions
of

x=R x+wb, 0< w<i. (2.5)

A

and of (1.1) coincide, furthermore we derive from
Theoremz2.1 that the sequence

XV R x® +wb, k=01... (2.6)

converges to the solution x.

We note that (2.5) is an operator equation of
the second kind, so its solution xis given, due to
(2.3), (2.6) by the Neumann series

x:i Rﬁ,wb:wi R)b .
v=0 v=0
This implies
Al =w Z RY.,
v=0

so that, by (2.3) and (2.5)
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A =| gt
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Combining (2.5) — (2.7) yields a result
which serves as basis for an automatic error con-
trol:

Let ze 1" be arbitrary. Let B{z) denote the
ball of radius

r

= | (2.8)

TR P
IR

centered around z, then the solution x of (1.1) is
contained in B{z), that is

x € B/{2) (2.9)

Proof
Applying (2.7) to (1.2) gives

s <ja- s <ja{p-ad @10

which in turn implies (2.9).

Let denote A, (A)and A, (A) the largest and
smallest eigenvalue of A. Choose the parameter
w according to

2
W = (2.11)
P M A) + A (A)
then the spectral radius of Ry is given by
pR, )=tmaeld “Ana @) ) (g 19

R lA) + Ay (A)

Unfortunately the extreme eigenvalues of a
matrix A are not known in general, therefore the
results of this section must be formnulated in a
way, so that they are applicable for computa-
tional analysis.

3. An estimation theorem

In this section we demonstrate how to apply
the theoretical results of the preceeding section
in practice. It turmed out, that intervals are an
appropriate tool to describe numerical intoler-
ances. The set of closed real intervals

lal:=[aa] = {x eRla<x<a}

is denoted by J(3). Analogously J(R"™) and J(R™")
are defined. Intervals are written in square
brackets. Set theoretic relations, such as =, c, U
are explained as usual,for vectors and matrices
componentwise,

For [a] e J(R) midpoint mid ([a]), diameter

diam ([a]) and absolute value |[a]| are defined
according to

mid (la]) = %[g+5),

diam ([a)) =ad -a,
|lal|=max{|d.[al }.

for interval vectors and matrices we write | .| and
again these definitions apply componentwise.
For intervals the basic arithmetic operations
*e{+ - ,/} are explained according to

[a]* [b] =[min{a* b.a+ b.a* ba+ b},

max{g* b,a*b,a*b,a* l—)}]

with O ¢ [b] in case of division.

With V, A we distinguish the downwardly
and upwardly directed roundings. Of great im-
portance is the scalar product of two vectors, e.g.
for computing R, in (2.1). This operation must be
done with maximum accuracy, so that no floating
point number lies between the exact and the
rounded result of such an optimal dot product
(cf. Kulisch/Miranker [1]).

For a given floating point quantity y we as-
sign a corresponding interval [y] quantity by

[y] = [Vy, Ay] h (3.1)

so all imprecisions of a numerical process can be
controlled. Using the notations from interval
analysis the results of the previous section are
summarized in
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Theorem 3.1

Let X denote an approximate solution of
(1.1). Then the following error bound is guaran-
teed

Iﬂiﬂllﬂl%%umﬂﬂ—[b]n- 62

provided [[R,]|<1.

Proof

Combine Theorem 2.1, along with (2.5) —
2.7).

Let

C =max 3a | (3:3)

and o be a real number with 0 < a < 1. If the pa-
rameter w in (2.1) is chosen, so that

0ol g, ol .in, (3.4)
o w

holds, then Ry is strictly diagonal dominant. To
see this, consider

noC lwalk| o wC
L [ -wa] - wa

k1
ket
then (3.4) implies

wC <m(l—wq,)=0L
l_wau

0<

l—wau

Since A is selfadjoint, the matrix R, =1 - wA
is also selfadjoint, thus

PR, =R,

where p(Ry) denotes the spectral radius of Ry.

If A is additionally strictly diagonal domi-
nant, we derive with Gerschgorin's circle Theo-
rem the computable bound

o) paxt -, +uwd ol @9

J=t

in this case (2.7) is immediate.

Once a floating point approximation X has
been computed, the next step is to set up the er-
ror bound (3.2). To this aim we realize the estima-
tion by a computational process:

If [z] eJR" is an interval vector with the
property

wb + R |z]c [2] (3.6)

then the solution x of (1.1) lies within [z].

Proof

The mapping on the left hand side of (3.6) is
continuous, therefore the enclosure in (3.6) fur-
nishes together with Brouwer's fixed point Theo-
rem the assertion.

In practice, the set [2] is determined itera-
tively, according to

] - ol + (R K=0ke 2

when starting with [©%]=[%].

As direct consequence of enclosure (3.6) we
have:

If two iterates of (3.7) fulfill

[x““ "] c [xfk’], (3.8)

then the estimation

|% - x| =|A (A% - b)| < diam((x*"]) (3.9)

has been established.

Since by construction |R,| <1 is attained,
the difficulty for explicitely bounding “A ‘” resp.

IR, | is transfered to the examination of the enclo-
sure requirement (3.8), this condition however
can be checked easily by computational means,
such a computer assisted a posteriori error
analysis for large sparse systems seems not
available.
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Figure 1. Matrix type 1.

4. Realization and numerical
results

Here we report about numerical tests and
discuss aspects of implementation. The exam-
ples treated are taken from process simulation
(cf. Klettenheimer [7]). The matrices of the linear
systems are sparse, symmetric and positive defi-
nite. There are considered two types of matrices,
where the distribution of the non-nullelements is
displayed in Figures 1 and 2.

The necessary steps are described below.
1. Compute a solution ¥ with the method of
conjugate gradients (%)
2. Choose w and o, which are related by (3.9)
and built up Ry (R).
3. Correction of the relaxation parameter w
(R)
4.  Validation step (I R)
We continue giving detailed comments on
these steps.
Step 1
The matrices are stored with compressed
row storage techniques. First a floating point ap-
proximation ¥ for (1.1) is computed by the follow-

ing preconditioned CG (PCG) scheme, with M as
preconditioner:

r S Ly : e & g
W, W Zhea
NS S L Mty X
' -.‘H wie, "I'x. e *u-l-
BT TR R i
-.'.: ll'. - L | 5 "
'.'::: .: ., =
Cow ™
TanowlL T,
" oy Y L,
' ", .
L . e 5%
i S ;7
-LI;- . ". ! '.F:‘,':
i It s i % T ¢
wOOE R i
o A ¢ ™,
e ! - b L
SO | Y L

Figure 2. Matrix type 2.

9 initial guess

r[O) =h - Ax(O] R
i= 1,20
MZ(F]) = r(('l) ,
0 =1
- U ol
Proi = ____(r L B!
(ru 7r' z" a))
PO =20 + B, P
(r((- l)' Z“ l))
= -(pm Ap™) :
X0 = D 4

r0 = D g ap

If M is positive definite and A9 not the true
solution, we derive a, > 0 and B, > 0. After some
manipulations we arrive at the recurrence rela-
tion

a B (B LYo L

&y o Ay Ay

(4.1)
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in matrix form shortly written as

(AM )R = RB, 4.2)

B = . P (4.3)

and the (i+1)-th column of the matrix R is the re-
sidual vector . Since AM'! and B are similar
matrices, they have identical eigenvalues. In gen-
eral the iteration terminates after k << n itera-
tions, that is "r""il is very small. Then we treat r*

as zero vector; define a submatrix By of B by us-
ing k instead of n and consider instead of Ra nx
k-matrix Rewith columns r'®, r®, ..., r'*", and ob-
tain

(AM )Ry = RiB. . (4.4)

In our computations M was taken as the identity
matrix.

Step 2

This is a straightforward realization of ine-
quality (3.4).

Step 3
The extreme eigenvalues of B are taken as
approximation for the extreme eigenvalues of

AM', The computation of the eigenvalues of By
with the QR method can be performed as a by
product in the PCG scheme with additional com-
putational and storage costs of order O(c) only.
Furthermore AM * must not be given explicitely.
Now the parameter w is chosen due to (2.11).

Step 4

In a final validation step, the guaranteed er-

ror estimation (3.9) is established in an interval
analytical framework.

Numerical results reported here, were ob-
tained by a PASCAL-XSC code on an usual PC
486 DX-2/66. In the Table 1 we show some nu-
merical results,

For a nonsingular and non-SPD matrix A
we solve instead of (1.1) the equivalent linear sys-
tem

ATAx=A"b, 4.6)

where AT indicates the transposed matrix of A.
Since (4.6) is now a system with a SPD matrix, the
method discussed here is applicable to a wide
class of problems.

Nomenclature
n dimension of the linear system.
NNE number of non-nullelements, compa-

red to n? expressed as a percentage.

iter number of iterations needed to com-
pute a good approximation %, that is

Table 1
Type of matrix 1 1 1 2 2
N 28 1054 3102 113 257
NNE 17.4 0.62 0.42 8.75 3.85
iter 25 75 410 40 37
€ 1.0E-10 1.0E-10 1.0E-10 1.0E-10 1.0E-10
w 0.999 1.020 0.643 0.567 0.568
p(Ruw) 0.979 0.979 0.996 0.992 0.985
diam (x 2.,564E-10 1.678E-3 8.616E-9 4.175E-8 2.835E-7
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for an iterate of the CG-method the
defect is sufficiently small

Hdefect" <eg (4.5)
For simplicity as starting vector

always the nullvector has been cho-
sen.

stopping rule in (4.5).
according to (2.11).

p(R,) estimation, according to (2.12).

Diam () diameter of the interval vector, enclo-

1.

sing the solution x, according to (3.9).
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