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Abstract

Local and global uniqueness theorems of solutions of the non-linear differential equations

L= fltx),ae R, 0<a=s1

of non-integer order have been obtained. Our method is an application of Gronwall’s and Bihari’s inequali-

ties.
Key words: Fractional derivative.

Teoremas de unicidad de soluciones locales
y globales de ecuaciones diferenciales no-lineales
usando las desigualdades de Bihari y Gronwall

Resumen

Se obtuvieron teoremas de unicidad de soluciones locales y globales de ecuaciones diferenciales no-

lineales

X = fltx),aER,0<ax<1

de orden no-entero. Nuestro método es una aplicacion de las desigualdades de Gronwall y Bihani.

Palabras clave: Derivada fraccional.

1. Introduction

Consider the initial value non-
homogeneous differential equations with frac-
tional derivative (i) subject to (ii):

i xX“0=flt).ceR, 0<ax<1,

(1) X7V (t,) = x,, (1)

where R is the set of real numbers, t € [ = [0, ®)
and fis a real-valued function on D =1 x R" into

R" where R™ denotes the real n-dimensional
Euclidean space, and x, is a real constant.

In a recent paper, Hadid et al [1], used the
fixed point theorem and contraction mapping
principle to obtain local existence and unique-
ness of solution of problem (1). Hadid [2] used
Schauder’s fixed-point theorem to obtain local
existence, and Tychonov's fixed-point theorem to
obtain global exdstence of solution of (1). Bassam
[3] proved local existence and uniqueness theo-
rem for (1), by using the Banach contraction
mapping principle.
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In this paper, we shall use Bihari's inequal-
ity [4] to obtain local uniqueness and Gronwall's
inequality to obtain global uniqueness of solution
of problem (1). We shall adopt the definitions and
notations used in [5] and [3].

It is worth mentioning that it was shown by
Hadid and Al-Shamani [6] that the solution of (1)
is of the form

1 1 L u=
x(0) = x,t— )™ + Ta]f‘v(t— ' fls, x(s)) ds, (2)

where 0 <t;<t=<ty+a,andl is the Gamma func-
tion, provided that the integral exists, in the
Lebesgue sense.

2. Local Uniqueness

In this section, we shall prove a local
uniqueness result by applying Bihari's inequal-
ity, which we state here in a suitable form.

Theorem (Bihari's inequality)

Let g be a monotone continuous function in
an interval I, containing a point u,, which van-
ishes nowhere in I. Let u and k be continuous
functions in an interval J = [t,, t, + c¢] such that
u(J) C I, and suppose that k is of fixed sign in J.
Let a € 1. Suppose that

ul) < a+ ffu k(s)gluls)ds, t € J.
Then

utt) = G| Gla) + [ kisids). t € J,

1 dx
where G(u) is a primitive of —,i.e.Gu) = [* —

glx) “o g(x)
uel

Theorem (1):
(Local uniqueness theorem)

The initial value problem (1) has a unique
solution on the interval ty < t < ty+a, if the func-
tion f{t,» is continuous on the region

O<ty<tsty+a, |x-xt-t)%'| = b,

and such that

[AtA - fiLy)] = ¢l]x-y|), (3)

where ¢(u) is a continuous non-decreasing func-
tion on 0 < u < A, with ¢(0) = 0 and

2O _ L
Jogm =+ @

Proof:

Assume that there exist two solutions x{f)
and y(t) of (1), both defined in a neighbourhood at
the right of t;. We have

X0 = xlt = 67+ s (6= 97 fls x(5) i,

- 1 "
yl = x,(t~ )" + F‘[cﬁf‘l“ (t— s)" fs y(s)) ds,
which lead easily to

It — e < f% It - 97 (s, x(8) — f(s, yls))ds.

It follows from (3) that
1 t a—1 _ i
ERCES TN ¢(|x(s) — y(s))ds.

a3

<e+ ra

I - 9<7'p(|xts) — y(s))ds,

where ¢ > 0. We can now apply Bihari’s inequality
to obtain

) I (Y
[t -yt < @ [“’(E” oT(e) }

for t € [t ty+ al, (5)

1
where @(u) is a primitive of the function —, and

@)
@ denotes the inverse of ®.
We shall prove that the right-hand side of
(5) tends toward zero as & - 0. Inasmuch as
|x(8) — y(6]is independent of ¢, it follows that x(f) =
y(f), which we need. Let us remark that condition
(4) implies ®(¢) » — « for ¢ > 0, no matter how we

1 K
choose the primitive of —. Thus ® }{u) >0 as u

o)

- — «. Consequently, when ¢ » 0 in the inequal-
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ity (5), the right-hand side tends toward zero (for
all finite t ).

Therefore, x{t) = y(8, for t € [ty,ty + a), and
the theorem is proved.

Remark:

The Lipschitz condition corresponds to
¢(u) = Lu, for some positive constant L. Another
possible choice for ¢(w) is, for instance,
@) = Lu |lnuj.

3. Global Uniqueness

We shall next discuss a global uniqueness
result for the initial-value problem (1) using
Gronwall's inequality. which we state in the fol-
lowing form.

Theorem (Gronwall's inequality)

Let a(f), b(f). and u(f) be continuous func-
tions in J = [ty, ty + ], and let b(t) be nonnegative in
J. Suppose

ut) < al@ + f{ blshulslds , t € J. Then

ult) < a® + f als)bls) exd J! b@dtlds, t € J.

Theorem (2):
(Global uniqueness Theorem)
Assume that

(i) flt.x is continuous in the region

D= {(L X):0<ty <tst,+a |x—xylt— to)“_’" < b} cQ,

where Q is an open (t,x)-set in R™!.

(i) fit.x satisfies a local Lipschitz condition,
with respect to x,

Ife 0 - st v = Lix - yl,

for some positive constant L.

(ii) () and X(f) are solutions of (1), such that
their intervals of definition have common
points and x“7(t,) = ¥“"(t,), in such a
point.
Then x(f) =
definition.

X() on the common interval of

Proof:

Assume that (t;.t) is the interval where
both solutions are defined. Then ¢, € (t;,tp). It
suffices to prove that x(t) = X(f) for ty < t < t.

Consider now a number T, such that {5 < T<
to. It will be fixed in the first step of the proof, but
we want to point out that it can be chosen arbi-
trarily close to ty. Let K C Q2 be a compact set such
that

(t x(®), & %) € K, for t € [t.T].

The existence of the set K, with the preced-
ing property. is the consequence of the fact that
both sets {(¢,x(1); t € [ty, T} and {(t,%(0); t € [t,, T}
are compact, which follows easily from the conti-
nuity of x(t) and (9.

Denote by x; the common value of the solu-
tions x{t) and %() at t = &;.

For t € [ty, 7] we shall have

«—1 _1_ _ =1
x{) = x,(t— t,) 7" + I Ji, t = 8"\ f(s, x(s)) ds,

f C(t—s)7 fls, X(s)) ds,

x[t] = xo(t - tO “ ] r( to

from which we get

llxte) - x(tl<—f t- 9

|f (s x(8) — f(s 9)ds

<Tf

<e+ m Jo, =97 |xds) - X)ds.  (6)

- 5“"!|xls) — Hs)fds

forany e < 0 and t € [t,,T].
[nequality (6) is of Gronwall type, therefore,
the application of Gronwall's Theorem yields

[0 — =] < & + -——EI;?) )q{(f - to)“}

< i e ]

€ {to,71. (7)

Since ¢ is arbitrary, inequality (7) implies
that x(f) = %(f) on [ty,7]. On the other hand, T can
be chosen arbitrarily close to t;, which proves
that x(t) = X(t) on [ty.t].

Hence the theorem is proved.
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