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Abstract

Injection molding of thermoplastics is a cyclical process where a granular polymer is melted and in-
jected into the cavity, molded under pressure and ejected after solidification. The control of cavity pres-
sure profile from cycle to cycle during the filling stage is important to ensure quality injection molded
parts. First, open-loop experiments are performed to determine and verify an appropriate model order.
Secondly, due to the time-varying characteristics of this process, a self-tuning algorithm with an observer
is employed for controlling the cavity pressure time profile to a set-point trajectory. The model parameters
are determined on-line using the recursive least-squares estimation algorithm, and the controller pa-
rameters are calculated using the pole location procedure. In order to reduce the controller saturation, the
self-tuning algorithm is implemented along with a first-order observer and state feedback.
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Modelaje y control auto-ajustable de la presion
en una cavidad de moldeo por inyeccion

Resumen

El moldeo de termoplasticos por inyeccion es un proceso ciclico en el que un polimero granular es
fundido y luego inyectado dentro de una cavidad, moldeado a presién y finalmente eyectado después de su
solidificacion. El control del perfil de presion en la cavidad es importante para el control de calidad del pro-
ducto moldeado. Primero se realizaron experimentos a lazo abierto con el fin de determinar y seleccionar
un orden apropiado del modelo. Posteriormente, debido a la naturaleza variante de este proceso, se imple-
mento una estrategia de control auto-ajustable (“self-tuning”) para controlar el perfil de presiéon a una tra-
yectoria de referencia. Los parametros del modelo son determinados en linea mediante un algoritmo de
minimos cuadrados, y los parametros del controlador son calculados usando el procedimiento de ubica-
cioén de polos. Para reducir la saturacion del controlador, el algoritmo auto-ajustable es implementado en
conjunto con un observador de primer orden y un realimentador de estados.

Palabras clave: Control adaptivo, control self-tuning, moldeo por inyeccion.

Introduction Several researchers have pointed out the
importance of measuring and controlling the cav-
ity pressure. The paper of Kamal et al. [1] is worth
mentioning because it contains early studies of
the cavity pressure dynamics and control. Costin
et al. [2] applied the sell tuning regulator algo-
rithm (STR) to control the hydraulic pressure to a
constant pressure gradient in the filling stage.

The cavity pressure is the primary factor af-
fecting the final part quality of an injection-
molding machine. Cycle-to-cycle variations of the
mold-cavity temperature and pressure during
the molding process may produce warpage, due
to residual stresses, and changes in physical
properties of the parts with tight tolerance limits.
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Gao [3] implemented the STR in the control of the
cavity pressure in the filling and packing. Adap-
tive control was also used by Chiu et al. [4]. Smud
et al. [5] used several algorithms to control the
cavity pressure during packing and holding
phases using the clamp force as manipulated
variable,

Cycle-to-cycle variations of the mould-
cavity temperature and pressure during the
moulding process may produce warpage, due to
residual stresses, and changes in physical prop-
erties of the parts with tight tolerance limits.

The plant Figure 1 was described elsewhere
[6] A 3-mm thick rectangular cavity with length
10.1 cm and width 6.5 cm was used in this study.
A pressure sensor is installed flush with the cav-
ity surface of the fixed plate at the gate. The con-
trol variable u is the supply servo-valve (SSV)
opening, and pp, p, . and prefer to the hydraulic,
nozzle and cavity gate pressure, respectively.

Process Model

Preliminary experiments were conducted to
record input/response data that could be used in
selecting the process model structure. Prelimi-
nary experimental results suggested that a first-
order model could describe the response in hy-
draulic pressure for a fixed servo-valve opening (u)

" dP
Th Ef""'a =K,u (1)

The following assumptions are used to de-
rive simple models: 1) the frictional force oppos-
ing screw movement is negligible; 2) the accelera-
tion of the actuator-screw assembly is propor-
tional to the hydraulic pressure gradient, dpp/dt;
3) the polymer does not leak back through the in-
jection valve; and 4) the polymer flow in the noz-
zle and runner is isothermal. Assumptions 1) and
2) imply that a force balance for the screw-
assembly may be written as

d
Ap, —pA =K @

where Ay and A, are the effective areas for the hy-
draulic and nozzle pressure. A change in polymer
mass in the cavity equals the mass flowing
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Figure 1. Schematic of the injection molding
system.

through the runner, so a mass balance for the
cavity may be expressed as

P o | PP

where R is the flow resistance from the nozzle to
the cavity gate. The variations in density with
time is expressed as a function of the cavity gate
pressure and temperature variations as

T
() () (2) )
p).\ot aT /p\ ot

Assuming isothermal filling, supposition
(4), and substituting the density variations from
equation (4) into equation (3) gives

ldp
where
a -1
P Pn
c=||= == (6)
[[MJH V.R.

Considering constant 7,, Kp, A, K, and ¢,
which is valid for short periods only, and solving
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equations (1), (2), and (5) by Laplace transforma- Alz ")ylk) = Bz ulic — 1)+ ek) (13)
tion, the following expression results for the cav-
ity pressure dynamics polynomials A and B are given by
Pls) K,(t,s+1) Alz')=1+aqz '+..+a,z"™
Uls)  (1+1,s)(l+1,5) @ y . -

B(z"')=h+b,zZ +.+a,z" (14)
where 7, =1, 1, = 1/c, K, = A /A, and where z is the unit forward shift operator. To find

1, = mK/A;,. The discrete transfer function with
zero-order hold is

ylk) bz'+hz?
S Sy (8)
ulk) l1+az' +a,z

and the corresponding difference equation for a
constant input is

yli) + ayli)+ a,ylic — 2) = byulk — 1)+ Bufk — 2) (9)

Equation (9) shows a second-order model
for the cavity pressure response. However, pre-
liminary experimental results suggest that the
process can be approximated to an overdamped
second-order model, which gives similar results
to a first-order model. The discrete transfer func-
tions with zero order hold for a first order model is

ylk) _ Bz

s br (10)
where

aq=-e", B=(1+a)K/t (1)

In discrete-time domain, equation (10) is
expressed as

ylk) + aylic —1) = hufk —1) (12)

Parameters in equations (9) and (12) should
be estimated on-line using input/output process
data, as they vary with time. For low-order sys-
tems with time-varying parameters, an appropri-
ate estimation technique is the least-squares al-
gorithm with an exponential forgetting factor.
This identification algorithm has been given by
Astrém and Wittenmark [7] is described below.

Assume a process is described by the fol-
lowing linear difference equation with constant
parameters:

coefficients of the polynomials in equation (6),
equation (5) is conveniently written in the matrix
form

ylic) = o™ (k)0 + elk) (15)

where ¢ is the vector of measured values of out-
put and input variables

@7 (k) = [~ylic = 1)... ylkc = n,)
u(k = 1)... ulkc ~n, — 1] (16)

and 0 is the parameter vector
6" =la ...a, b ... b,] (17)

The parameters are calculated by finding
the minimum of the function J(8,k), defined as

1k , 4
J(0.K) = 5 z 2 yti)) — o7 (0] (18)

where } is the forgetting factor. The least-squares
solution [13] is obtained with:

6(k) = 6k — 1)+ K (o ylic) — 7 (Il — 1)]

K(k) = Plkc — Dl 1 + ¢" ()Pl — Dipli)
Plk) = [I - K(k}p™ (10| Pk — 1) / 2 (19)

Values between 0 and 1 are given to the for-
getting factor(}). In injection molding, X is appro-
priately selected to reflect the evolving cavity
pressure dynamics.

Self-Tuning Pressure Control

The self-tuning control strategy is shown in
Figure 2a, where the servo-valve opening is the
manipulated variable. Parameter estimation and
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Figure 2. Block diagrams of: (a) The self-tuning cavity pressure control. PT = pressure transducer,
Gec = controller transfer function, Gp = process transfer function.
(b) The self-tuning control strategy using an observer.

control syntehis are performed on-line using the
algorithms presented the text of Wellstead and
Zarrop [8]. These are described briefly as follows.

Neglecting model errors, e(k), in equation
(15), this can be written in polynomial form as:

Alz ylk) = Blz ")z 'ulk) (20)
and the feedback controller is of the form
Fu(ic) = Hr(k) — Gylk) 21)

where r{k) and y(k) denote the reference and the
measured controlled variable, respectively. F, H,
and G are polynomials which are selected so that
the system output tracks the reference signal
r(k). Substituting u(k) from equation (13) into
equation (12) yields the closed loop form

Hz ! BHz!
ylke) = FA+ 2z 'BG rik) = T r(k) (22)

The Fand G polynomials are found by solv-
ing the polynomial identity

FA+ z'BG =T(z") (23)

The polynomial H is calculated to achieve
the desired output, which is:

Wy _[BH] -

i) LK

For a desired closed-loop response based
upon a first-order model, the polynomial T(z" Yis
written as

T(z')=1-tz', t =exp(-At /f) (25)

where, Atis the sampling interval, and p the time
constant for the desired closed-loop response.
Applying the pole location design procedure with
the first-order model given by equation (12), the
polynomials Hand G defined in equation (21) are
found as:

6 =g =415

1-4
, H=h=— (26)
h

and the controller output is generated as:

u(k) = —g,ylk)+ hr(k) (27)
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The closed-loop model parameters are esti-
mated using the cavity pressure response, y(kJ,
as output and the servo-valve opening, u(k), as
input. Therefore, the controller parameters, g,
and h, are adjusted on-line with the feedback sig-
nals from the cavity pressure measurements.

Self-tuning control with observer

Controller saturation is a problem encoun-
tered in the control of the cavity pressure. To re-
duce this problem, employing a controller with
observer and state feedback (7] is suggested. The
block diagram of the control system with this
structure is shown in Figure 2b. The controller
equation is obtained from equation (21) in ob-
server form as:

Az 'wlic) = H(z ")r(k) - G(z ylk)+
[A(z ) - F(z")uk) (28)

where Ao(z'l) is the observer polynomial. An ob-
server with first-order dynamic is written as

Alz')=1-qg,z", a =exp(-At/7,) (29)

where {, is the observer time constant. Therefore,
to reduce controller saturation, a preliminary
value v(k) is calculated by:

vlk) = —a,ulk — 1)+ “T‘l [r6)+ arlic = 1) -
g,ylk) + (@, — hlulk —1) (30)

and the controller output, u(k), is determined us-
ing the saturation function
Uppo I vlld>w
ulk) = jolk), if wu,, <vldsu,, (81)
Upne  IF 0lk) < iy,

where u,,,, and u_;, are the upper and lower
bounds of the manipulated variable.

Set-point profile

A linear model for the cavity pressure as a
function of time was used to generate a set-point
trajectory. This is given by

pg-_f = paf

b

psp(t) = pq[ +

t=p,+ (%) t (32)
sp

7
Table 1
Conditions for the dynamic open-loop
experiment

Time settings:

Injection 13s

Decompression 2s

Cooling 10s

Open 10 s
Coolant temperature 40°C
set point
Barrel temperature 250/220/200/190°C
sel points
Sampling interval A=0.020s
Input period T,=0.16s
(square wave)
Input amplitude A, = 0.5-70%

where t; is the filling time, p,, the initial pres-
sure, and (dp/df) g, is the desired slope of the cav-
ity pressure curve during filling. To completely
describe the cavity pressure profile, a model for
the packing pressure is given by the expression

pp[t—] = pgj + (ppp =, pef{l _exp(_t /TP] (33)

where Ppp is the peak pressure and 7, the time
constant for the packing stage.

The slope set-point during filling (dp/di)sp
cannot defined arbitrarily. However, it is possible
to find and experimental relationship between
the filling slope and the peak pressure which can
be used to calculate the set-point for a required
peak pressures.

Experimental Procedure

The experiments were divided into three
groups: 1) dynamic open-loop experiments,
2) static open-loop experiments, and 3) closed-
loop conirol experiments.

Dynamic open-loop experiment

A square-wave signal with input amplitude
of 0.5-70% and period T, of 0.16 s was employed
to obtain data for the model identification. Table 1
summarizes the conditions used to study the dy-
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slope of the pressure-time curve, during filling,
and the peak cavity pressure. Table 2 summarizes
the experimental conditions. The experiment was
conducted by increasing the servo-valve opening
from 10% to 80% every 5 cycles. Figure 4 shows
traces of cavity pressures for this experiment.
With the increase in the supply servo-valve open-
ing, both the filling slope and the peak pressure
increase. From the results, a linear relationship
between the peak pressure, pp, and the filling
slope set-points (dp/ dt)sp. was defined as

dp

1
(d_t)sp = (P, —1895) = (34)

Closed-loop control experiments

The pole location t; (see equation (25)) was
selected based on the values of the time constant
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Figure 3. Cavity pressure response to a square-wave variations in servo-valve opening
for a dynamic open-loop experiment.
namic of the cavity pressure. The time settings " Table 2 :
are: injection, interval during which the hydru- Conditions for the static open-loop
alic pressure is applied; decompression, period experiment
when the supply servo-valve is closed; cooling; )
. : Time settings:
and open, the interval for mold opening and plas-
: Injection 13 s
tication. The cavity pressure response during fill- b . 5
ing for this experiment is presented in Figure 3. S =
Cooling 10s
Static open-loop experiment B R
An open-loop experiment with constant COOI"”_“ temperatie 40°C
" (static) servo-valve opening during each cycle was neL pamt
used to determine a relationship between the Barrel temperature 250/220/200/190°C

set points
Data acquisition and servo-valve manipulation
Sampling interval A=0.040s

Servo-valve opening, u (staircase function)

u (%) Cycles
10 1-5
20 6 -10
40 11-15
60 16 - 20

7, in equation (33). Values of 7, were obtained by
fitting equation (33) to different data of packing
pressure variations with time, and they were
found to be between 0.05 s and 0.16 s. Therefore,
by considering § =z, the desired pole location
t;, for At = 0.020 s, should be between 0.88 and
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u=10%

Pressure, MPa

Figure 4. Variations in nozzle and cavity
pressures (-) with time using the conditions
given in Table 2,

0.67. Avalue of t; = 0.7 was chosen for the control
experiments. The time constant for the first-order
observer was selected as two sampling intervals;
7, =0.04 s, which corresponds to a, = 0.39 s (see
equation (29)).

The experimental procedure was set using
a fixed value of servo-valve opening (open-loop)

until the polymer has filled part of the cavity, be-
fore starting the self-tuning control action. Ex-
perimental conditions for the closed-loop experi-
ments are summarized in Table 3.

Results and Discussion

Data collected in the dynamic open-loop ex-
periment at conditions used in Table 1 was used
for the purpose of model identification. The re-
cursive identification algorithm described by
Ljung [9] was used to fit the cavity pressure data
with the first-order model and second-order
models given by equations (12) and (9). respec-
tively.

Two performance criteria [10] were used for
model evaluation: the minimum values of the
summation of square error (Vi) and the final pre-
diction error (FPE), given by:

N

143 1+n/N
Nia2 l—-n/N u

(35)

A [yt) - y. .00, FPE =

I

where y_(k,0) is the calculated cavity pressure us-
ing equations (9) or (12), nis the total number of
estimated parameters, and N the length of the
data record. The models are compared with re-

Table 3
Conditions for the control of the cavity pressure

Time settings:

Injection 13s

Decompression 2s

Cooling 10 s

Open 10 s
Coolant temperature set point 40°C
Barrel temperature set points 240/220/200/190°C
Sampling interval A=0.020s
Time constants:

Set-point 1, =0.16

Observer 1, =0.04
Other conditions Experiment )

CP-1 CP-2 CP-3 CP-4

Forgetting factor, A 0.95 0.75 0.75 0.75
Input range, u, % 0.5-90 0.5-90 0.5-90 0.5-80
Slope set-points, (dp/dt),,, MPa/s 3.1 3.1 1.74 5.19
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Table 4
Comparison between prediction errors for
different forgetting factors using

conditions of Table 1

First-order model, equation (12)

A Vy (MPa?) FPE (MPa?)
0.75 0.147 0.1530
0.90 0.1541 0.1604
0.95 0.1611 0.1677
0.99 0.1683 0.1751

Second-order model, equation(9)

A Vy (Mpa? FPE (MPa?
0.75 2.4539 2.6587
0.90 2.4241 2.6261
0.95 2.3617 2.4002

2.4983

0.99 2.2996

spect to their performance criteria in Table 4, us-
ing different forgetting factors. The first-order
model showed prediction errors lower than those
of the second-order model. These suggest that a
first-order model is appropriate. The forgetting
factors should be taken between 0.75 and 0.99.
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Figure 5. System response during the filling
stage in Experiment CP-1 (A = 0.95), with
conditions shown in Table 3.

(a) Cavity pressure and set-point, and
(b) servo-valve opening.

Control of the cavity pressure

Three values of slope set-point profiles were
defined for the control of cavity pressure during
filling as shown in Table 3. Figure 5 illustrates
variations in pressure and servo-valve opening
with time for Experiment CP-1 (Table 3). For 10%
of initial value of the control signal and A = 0.95,
the cavity pressure tracks the slope set-point
(3.10 MPa/s). However, a high value of » averages
parameters in the estimation period and leads to
delays in the cavity pressure response with re-
spect to the set-point profile as seen in Figure 5.
In addition, parameter variations have been
found to be quite rapid during the filling stage.
Then, lower forgetting factors are requiered. A

value of A = 0.75 was used for other experiments,
as suggested from results in Table 3.

As shown in Figure 7, for Experiment CP-3
with a set-point profile of 1.74 MPa/s, the con-
troller performs better using a lower forgetting
factor, although more oscillations occur. This is
because low forgetting factors weight the most re-
cent measurements. Figure 8 shows that the re-
sponse follows the set-point trajectory in Experi-
ment CP-4, and that the control signal remains
within the bounds (0.5% < u < 80%) during most
of the filling stage. The response is still oscilatory

(2)
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4
§ 3; I)'ala‘ . # ol
o Set point g
-5,-’ —_ N
Z —_—
A 1
00 0.25 0.5 0.75 1 1.25 1.5 1.75
Time, s
(b
10
>80
ah
g 601
& 40
220
>0 -
0 0.25 0.5 0.75 1 125 1.5 175
Time, §

Figure 6. System response during the filling
stage in Experiment CP-2 (A = 0.75), with
conditions shown in Table 3.

(a) Cavity pressure and set-point, and
(b) servo-valve opening,.
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Figure 7. System response during filling and
packing in Experiment CP-3 with conditions
shown in Table 3. (a) Cavity pressure and
set-point, and (b) servo-valve opening.

because the upper bound of the servo-valve
opening is too high. Oscilations diminished when
the upper bound was set at 80% as seen in Fig-
ure 8 for Experiment CP-4. Both temperature
and pressure change very rapidly during filling,
thereby affecting the polystyrene compresibility
since it is amorphous and its viscosity is very
sensitive to temperature near the glass transition
temperature. This leads to oscillations in servo-
valve opening. However, reasonable results on
the control the cavity pressure profile were ob-
tained.

Conclusions

A first-order model for the cavity pressure
dynamics along with a self-tuning approach has
been proven to be effective in controlling the cav-
ity pressure profile during the filling stage. Pa-
rameters of the model are estimated online using
forgetting factor A = 0.75, while the controller pa-
rameters were determined by the pole location
procedure. Controller saturation is reduced us-
ing a first-order observer and state feedback. Ex-
perimental results showed the effectiveness of
the proposed strategy.

The cavity pressure is difficult to control
due to polymer solidification in the sprue and

11
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Time, s

Figure 8. System response during filling stage
in Experiment CP-4 with conditions shown
inTable 3. (a) Cavity pressure and set-point,

and (b) servo-valve opening.

runner and at the cavity walls. Polymer solidifica-
tion causes a damping effect which conducts, in
some cases, to oscillations in the manipulated
variable and consequently in the cavity pressure.
These oscillations may affect part properties. For
a future development of this work, to avoid this
incovenience, the use of digital filters is sug-
gested.
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