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Abstract

The emulsification yield, i. e., the reduction of drop size when a surfactant-oil-water system is
stirred, can be altered by changing: 1) the physicochemical formulation variables which are linked to the
nature of the water, oil, and emulsifier, 2) the composition variables [surfactant conceniration and water-
to-oil ratio] and 3) the variables which characterize the mechanical energy supplied by the stirring device.
After reporting the general trends found in previous research, the best compromise situations to attain a
minimum drop size are located in a three dimensional formulation-composition-stirring space.
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Rendimiento de emulsionacion en funcion
de la formulacion, de la composicion
y de la energia de agitacion

Resumen

El rendimiento de emulsionacion, que se puede estimar por la disminucién del tamano de gota al
agitar un sistema surfactante-agua-aceite esta regido por: 1) las variables de formulacion fisico-quimica
que dependen de la naturaleza del agua, del aceite, y del emulsionante, 2) las variables de composicion
[concentracion de surfactante, y relacion agua-aceite], 3) las variables que caracterizan las condiciones de
agitacion. Después de describir las tendencias generales encontradas en investigaciones recientes, se es-
pecifican las condiciones para lograr el minimo tamario de gota en el espacio tridimensional formulacién-
composicion-agitacion.

Palabras clave: Emulsion, formulacién, agitacién, tamano de gota.

Introduction Emulsification is carried out in most cases

by stirring a surfactant-oil-water (SOW) system.

Emulsions are found in many natural and Water is generally an aqueous solution contain-
man-made products and industrial processes like ing different electrolytes as well as other solutes,
polymerization, food conditioning, paint manu- Oil refers to a nonipolar phase, such as hydrocar-
facturing, petroleum production, asphalt applica- bons, natural triglycerides or their derivatives.
tion, cosmetics and pharmaceuticals, etc. [1-2]. The stabilizer, so-called emulsifier, is generally a

* This paper was written after an oral communication presented at the 4" International Symposium on Mixing in In-
dustrial Processes, Toulouse-France May 14-16, 2001.
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surfactant or a surfactant-cosurfactant mixture.
The efficiency of Lthe emulsification operation is
directly related to the drop size reduction that is
attained at the end of a mixing-stirring process.

It is known that smaller drops can be at-
tained by different means, as for instance by in-
creasing the emulsifier concentration, by de-
creasing the interfacial tension, by stirring in a
more energetic way or during a longer period of
time. Some of these methods could be more or
less effective depending of the case, and the
emulsion maker has to rely on experience to de-
cide how to combine the different effeets to attain
the best product characteristics. Most compre-
hensive studies, which are available in the litera-
ture, have been carried out either at constant for-
mulation, constant composition or constant stir-
ring conditions. This is essentiaily due to the fact
that engineers involved in mixing-stirring tech-
nology do not know or do not care about
physico-chemical formulation, whereas chem-
ists or physical-chemists are not often concerned
by hydrodynamics and mixing issues.

As a consequence none of the current ap-
proaches is satisfactory for the emulsion maker,
and all are likely to hinder the effects of coupled
and competitive phenomena, although these
have been recently reported to be determinant in
many instances [3-4].

Thus, an integrated phenomenological ap-
proach is to be preferred, in spite of the complexi-
tiesinherent to the three types of variables. Start-
ing with an overview of the formulation influence
on emulsion properties at constant stirring [5-9]
which has been known for almost two decades,
the paper presents a new analysis of two variable
coupling, i. e., formulation-stirring [10-11],
composition-stirring, and relates it to the
formulation-composition map [12]. It finally
shows that a three-dimensional mapping of the
emulsification yield as a function of the com-
bined effects of the three types of variables at
once, i.e., formulation, composition and stirring.

Physico-Chemical Formulation

Physico-chemical formulation concerns a
set of intensive variables which are characteristic
of the nature of the components, as well as tem-
perature and pressure. It determines the phase

behavior, as well as interfacial properties such as
tension or natural curvature. Although emul-
sions are systems out of equilibrium, the formu-
lation is of paramount importance during the for-
mation of an emulsion and its useful lifetime be-
cause it determines its properties [13], as will be
discussed later on. This is because the emulsion
persistenice is very often long enough for the
phases to approach or to reach physico-chemical
equilibrium.

Handling formulation issues is made diili-
cult by the large number ol components, which
are included beyond the surfactant-oil-waler ter-
nary, such as co-surfactants, electrolytes or
polymers additives. Additionally, most compo-
nents are not pure substances, but mixtures of
chemical species that could be as complex as a
crude oil or that could contain as many different
electrolytes as seawater. As a consequence, a
systematic study could require thousands of re-
search hours to be completed, even for a com-
monplace practical case. This is why formulation
has been considered an art rather than a science.
In the past hall-century, researchers have tried
to change this situation by quantifying formula-
tion concepts and to assign to them some charac-
teristic numerical value.

The empirical Hydrophilic-Lipophilic Bal-
ance (HLB) method was proposed 50 years ago by
Griffin [14-15]. A few years later, Winsor [16] pro-
posed a theoretical interpretation based on the
molecular interactions of the adsorbed surfac-
tant molecules at the interface and the neighbor-
ing oil and water molecules. This was an enlight-
ening and pedagogical contribution as far as the
physico-chemical understanding was con-
cerned, but no numerical value was attainable.
In the 60’s Shinoda introduced the Phase Inver-
sion Temperature PIT, i. e., an experimentally at-
tainable parameter which takes into account all
the variables [17]. In the late 70’'s studies on the
enhanced oil recovery by surfactant flooding
reached a complete description of the formula-
tion effects, under the framework of correlations
involving the effect of the oil type, electrolyte type
and concentration in water, surfactant type, al-
cohol type and concentration, as well as tempera-
ture and even pressure [18-21].

More recently, these relationships were jus-
tified from a physicochemical point of view as
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representative of the surfactant affinity differ-
ence (SAD), i.e., the free energy of transfer of a
surfactant molecule {rom the oil phase to the wa-
ter phase [22-24], as indicated by equation (1):

SAD = Ap*, .. = p*¥ - p* (1)

where the p* are the standard chemical poten-
tials.

For the sake of simplicity, SAD was later re-
placed by the Hydrophilic Lipophilic Devialion
(HLD) which is SAD numerical equivalent when
reference is taken at optimum formulation [25-
26]. HLD has been recently shown to be experi-
mentally attainable through the measurement of
the partitioning coefficient P of the surfactant be-
tween excess oil and water phases of a Winsor's
type Il system [26-28] by HPLC or HPSEC analy-
sis [29-30].

RT HLD = Ap*,.., = @ =% =
o

RTIn P=RT In g;v (2)

HLD may be expressed for nonionic surfac-
tant systems by equation (3) that specifies the
compensating effects of the formulation vari-
ables and coincides with the early correlation for
low tension attainment [31]:

HLD =a-EON+bS-kACN-¢ o + cp AT (3]

A similar equation (4) has been found for
ionic systems, either anionic or cationic [32-33]:

HLD =InS-kACN + 0 - fy —ap AT (4)
where
a is a parameter which is characteristic

of the surfactant lipophilic group

EON is the number of ethylene oxide groups
per nonionic surfactant molecule

o is a function of the surfactant
hydrophilic and lipophilic groups

S is the salinity of the aqueous phase in
wt.% NaCl (or equivalent)

ACN is the number of carbon atoms in the
alkane molecule (or equivalent)

f and ¢ sare functions of alcohol type and con-
centration

AT is the temperature difference with res-
pect to the reference (25°C)

k, at, or are constants characteristic of the sur-
factant type

b is a constant characteristic of the elec-
trolyte
The values of all these parameters are avail-
able for some systems in the literature [19-25,
31-34].

Physico-Chemical Formulation
Effects on Emulsion Properties

HLD measure the relative affinity of the
surfactant for the aqueous and oil phase. At HLD
= 0 the surfactant affinities are exactly matched,
and a minimum interfacial tension is attained,
sometimes in the ultralow range (< 0.001 mN/m)
so that capillary phenomena virtually vanish, as
sought in enhanced oil recovery processes [18].

It is now well established that as formula-
tion is changed from hydrophilic (HLD < 0) to
lipophilic (HLD > 0) conditions, whatever the
variable used to produce the change in HLD, the
emulsion inverts from oil-in-water (O/W} to
water-in-oil (W/0O) a change which is known as
Bancrofft's rule [35-36] because it essentially
corresponds to what was enounced almost one
century ago.

It is now well accepted that the emulsion
properties change according to Figure 1 scheme
that sum up scores of experimental data [3-11].

The emulsion drop size is the result of a dy-
namic equilibrium between two opposite effects:
on the one hand those which tend to decrease the
drop size, e. g., shearing or stirring, and on the
other hand those which favor the coalescence be-
tween drops [2, 37]. As the HLD = 0 formulation is
approached from both sides, the decreasing in-
terfacial tension advantages the breaking pro-
cess with a resulting smaller drop size. However,
the emulsion stability concomitantly decreases,
and drops coalesce instantly upon contact,
which favors the opposite trend, i.e., a larger drop
size. The first effect dominates far from HLD = O,
in Figure 1 unshaded zones, whereas the second
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Figure 1. Interfacial tension and emulsion property variations versus formulation (as HLD)
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Figure 2. Coupled effects of formulation and mechanical energy on drop size.

one prevails near it, in the shaded zone. This re-
sults in a complex variation of the drop size [11,
38-39], which exhibits two minimums, one on
each side of HLD = 0 as indicated by the tips of the
double arrow in Figure 1 drop size plot.

Combining Formulation
and Stirring Effects

An increase in stirring energy generally
tends to produce a decrease in drop size, because
it affects more the drop breaking mechanism
than the coalescence rate. Thus, an increase in
stirring energy is expected to widen the region
where the decreasing tension produces smaller
drops. As a consequence, the location of the
minimum drop is shifted closer to HLD = O when
the mechanical energy input is increased, as in-
dicated in Figure 2. In between the vertical lines
that record the minimum position shift, the effect

of the formulation on the drop size is one way or
the other depending on the mechanical energy
input. This evidence shows why it is difficult to
interpret experimental data when no clear under-
standing of the phenomenology is available.

Combining Composition and
Stirring Effects

The composition is also found to deeply al-
ter the emulsification efficiency. Both an in-
crease in surfactant concentration and an in-
crease in stirring energy tend to produce a de-
crease in drop size as seen in Figure 3. However,
the effects are not equivalent. Increasing stirring
speed from 1500 to 5000 rpm is seen to be very
significant at low surfactant concentration,
whereas it has essentially no effect at 5% surfac-
tant concentration.
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Figure 4. Influence ol composition (water/oil
ratio) on Emulsion drop size and viscosity.

In most practical cases the optimum strat-
egy will be some intermediate compromise be-
tween not so low surfactant concentration and
not so high stirring energy. For instance a 10 pm
droplet size (dashed line in Figure 3) can be at-
tained somewhere in between 1500 rpm and
20,000 ppm of surfactant or 5000 rpm and 5,000
ppm of surfactant.

Figure 4 indicates that the average drop
size decreases, concomitantly to an increase in
emulsion viscosily as the internal phase (oil)
amount increases from left to right. When the in-
ternal phase ratio approaches the inversion
value, the emulsion becomes extremely viscous,
often viscoelastic and a high yield (indicated with
an asterisk in Figure 4) is attained.

In this so-called High Internal Phase Ratio
(HIPR) emulsification process [40-42], which has
been industrially used to prepare cosmetics as
well as heavy crude oil emulsions [40-42], the
high viscosity of the concentrated emulsion is the
key to an enhanced drop breakage mechanism
[43] in regions where the formulation insure
emulsion stability.

As indicated in Figure 4, this enhanced
emulsification performance is altained near the
inversion line, typically located at 70-80% inter-
nal phase content, where the emulsion viscosity
is so high that only a low shear mixing can be ap-
plied. Nevertheless, this effect has been recently
found [44] to hold at constant Reynolds number
and at constant stirring energy input per unit vol-
ume of the system, i. e., independently of the
variation of the emulsion viscosity.

Combining Formulation and
Composition Effects in 2D
Property Map

Early studies [45] indicated that the depar-
ture from Banckroft's nile was in many cases due
to a water-to-oil ratio (WOR) very different from
unity. Since formulation and water-to-oil ratio
were likely to exhibit some crossed effect, the
situation was analyzed by plotting the emulsion
properties in a bidimensional map [46] as a func-
tion of the generalized formulation (HLD) and the
water fraction as illustrated in Figure 5 left map,
which schematically indicates the mapping of the
emulsion type in the formulation-composition
2D space [12]. Many experimental maps backing
this phenomenology have been published in the
scientific literature in the past ten years [3, 12,
39, 47-55].

The O/W and W/O emulsion type regions
are separated by a bold line, so-called standard
inversion line or locus, which exhibits a stair-like
shape. In the central part of the map, where
amounts of oil and water are relatively similar,
the inversion line is horizontal, and is coinciding
with HLD = O formulation, i. e., optimum formu-
lation for low tension and three-phase behavior,
as previously discussed. In this central region the
formulation is the variable responsible for emul-
sion inversion, which oceurs at optimum formu-
lation, according to Banckroft rule and as al-
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Figure 5. Bidimensional formulation-composition maps showing the emulsion types (left) and small
drop zones (right).

ready seen in Figure 1. This central region is la-
beled “A" with a “+" (respectively “-") superscript
to indicate the location above (respectively below)
the optimum formulation line (HLD = 0).

The inversion also displays two lateral
branches, which are essentially vertical, i. e., at
constant oil-water composition, typically located
at 25 and 75% of water. The low water content re-
gion is labeled “B” and the high water content one
“C", both with the same superscript symbol as in
the central region. The B* zone is the prolonga-
tion of the A” region, and there is no real bound-
ary between them, but a simple change in WOR.
The same occurs for the A" and C” regions.

Contrariwise, the C* and B regions exhibit
distinct characteristics, which reflect the conflict
between formulation and composition effects.
The C" region is located at HLD > 0 and, accord-
ing to Banckroft rule should correspond to the
W/O emulsion type. However an O/W type is
found in this region which is thus labeled as ab-
normal. Actually it is often a W/O/W multiple or
double emulsion, in which small water droplets
are located inside the oil drops, which are dis-
persed in a continuous water phase. The same is
occurring in the B region, but this time the roles
of the water and oil phases are inverted, and the
multiple emulsion is of the O/W/O type. More in-
formation on these maps may be found elsewhere
[56-57]. For the sake of simplicity it is enough to
remark here that stable emulsions are found in
the A* and A" regions, respectively of the W/O
and O/W types [12, 586].

It has been previously discussed that the
effects of formulation on interfacial tension and
emuision stability result in the presence ol a
minimum drop size at some distance from HLD =
0 on both side of optimum formulation (Figure 1).
On the 2D plot this minimum drop size extends
parallel to the horizontal branch of the inversion
line at HLD = 0 as the composition is changed.
The corresponding zone where a small drop size
is attained is indicated as a horizontal shaded
band (F) in Figure 5 right map. On the other
hand, it has also been shown (Figure 4) that
small drop emulsions are attained at high inter-
nal phase ratio, near the inversion. The corre-
sponding zones, which are located in both A re-
gions close to the vertical branch of the inversion
line, are shaded and labeled as H in Figure 5 right
map.

Combining Formulation,
Composition and Stirring Effects

Thus each A region contains two strips
where a small drop size is attainable. However, it
is worth noting that both strips are associated
with particular emulsion properties, which have
to be handled with care in a manufacturing pro-
cess. The F strips are located relatively near opti-
mum formulation, which is a low stability region.
As a consequence this location could be interest-
ing as a temporal situation while the emulsion is
made, followed by a formulation change to move
the emulsion characteristic point in the center of
the A regions where a good stability is warranted.
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On the other hand the H strip can be a risky
situation in an industrial process, since a small
formulation error might trigger the emulsion in-
version, with catastrophic consequences in most
practical cases. However, this ambush can be
avoided by shifting away the vertical branches of
the inversion line, either by increasing surfactant
concentration [58] or by decreasing the stirring
energy or duration [59], which both result in the
change indicated by the arrows in Figure 6 left
graph.

The combination of the formulation, com-
position and stirring energy effects is exhibited in
the 3D diagram shown in Figure 6 right plot,
which indicates the variation of the 2D map along
the stirring energy axis. The shaded volumes are
the regions where the drop size is expected to be
minimum on each side of the inversion line, Each
of these regions may be divided into two bands,
labeled H (high internal phase ratio) and F (for-
mulation best compromise) as in Figure 5.

The corner where H and F regions are over-
lapping could be particularly favorable to attain
extremely fine drop emulsions according to a
very recent study [60]. However, this location is
too near HLD = O Lo provide a good stability and
again it could be used only as a transient state
for emulsification. As soon as the emulsion is
made, the HLD must be shifted away far from
HLD=0, for instance by changing temperature or
by changing formulation, in what may be called
a quench process, one of the so-called unit op-
erations in emulsion formulation engineering
[60].
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Very recent investigations indicate that lo-
cal or transient stirring and mixing conditions
may be used to affect the emulsion type [61], or to
customize or fine tune the drop size distribution
[53-54], as in the case of bimodal emulsions tai-
lored to exhibit a particularly low viscosity and
Newtonian rheological behavior, even at high in-
ternal phase content [62-65]. Even more complex
cases are Lo be dealt with systems, which are
emulsified by mass transfer or phase inversion
[66-68], which is ofteri associated to spontaneous
emullsification [69] or with more or less retarded
equilibration, depending on the formulation [70].

Conclusion

Attaining a smaller drop size during emul-
sification is not inevitably a matter of raw force
and high stirring energy. Combining the effects of
formulation (HLD), composition (WOR), and stir-
ring energy can reach most efficient drop size re-
duction. Actually, the smallest drop size is not at-
tained by high-speed stirring (which tends to
limit the extension of the favorable HIPR region),
but by the slow mixing of viscous concentrated
emulsions, or by phase inversion.
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