On totally contact umbilical submanifolds of a manifold with a sasakian 3-structure

Constantin Călin

Technical University "Gh.Asachi" Iaşi. Department of Mathematics 6600 Iaşi Romania. E-mail adress:calin@math.tuiasi.ro

Abstract

In our paper [5] we proved that any totally contact umbilical submanifold M of a manifold with a Sasakian 3-structure with dim $\mu_x^{\perp} > 1$, $\forall x \in M$, is totally contact geodesic. In the present paper we solve the remaining cases. Namely, when dim $\mu_x^{\perp} = 0$, or dim $\mu_x^{\perp} = 1$, M is totally contact geodesic or an intrinsic sphere respectively.

Key words: Sasakian-3 structure; totally contact umbilical; totally contact geodesic; extrinsic sphere.

Sobre subvariedades con contacto umbilical completo de una variedad con una estructura-3 sasakian

Resumen

En nuestro trabajo [5] probamos que cualquier subvariedad con contacto umbilical completo de una variedad con una estructura-3 Sasakian con dim $\mu_x^{\perp} > 1$, para todo x que pertenece a M, es de contacto geodésico total. En el presente trabajo resolvemos los casos restantes. A saber, cuando dim $\mu_x^{\perp} = 0$ ó dim $\mu_x^{\perp} = 1$, *M* es de contacto geodésico total o una esfera intrínseca. rectivamente.

Palabras clave: Estructura 3-Sasakian, contacto umbilical completo, contacto geodésico total, esfera extrínseca.

Introduction

The notion of CR-submanifold has been introduced by A. Bejancu [1] for the Kaehler manifolds, by A. Bejancu-N. Papaghiuc [2] for the Sasakian manifolds (called semi-invariant submanifolds) and by M. Barros- B.Y. Chen-F. Urbano [3] for the quaternionic manifolds. Later, CR-submanifolds have been intensively studied from different points of view, several important results have been obtained, some of them being brought together in [1]. Also some important results have been obtained in [4] about QR-submanifolds of quaternionic Kaehlerian manifolds and in [2] on semi-invariant submanifolds of a manifold with a Sasakian 3-structure. It is well known (see [5]) that the tangent bundle *TM* of a semi-invariant submanifold *M* (called also contact CR-submanifolds), tangent to the structure vector field ξ , has the decomposition $TM = D \oplus D^{\perp} \oplus {\xi}$, where *D* and D^{\perp} are the invariant and anti-invariant distributions on *M*, with respect to the structure tensor field f on manifold \tilde{M} . Equivalently, M is a semi-invariant submanifold of a manifold \tilde{M} if its normal bundle TM^{\perp} has the decomposition $TM^{\perp} = \mu \oplus \mu^{\perp}$, where μ and μ^{\perp} are invariant and anti-invariant subbundles of TM^{\perp} with respect to f. The equivalence fails in the case of manifold with a Sasakian 3-structure. In this case the distribution D^{\perp} is not anti-invariant to the structure tensor field.

Rev. Téc. Ing. Univ. Zulia. Vol. 27, No. 3, 2004

According to a known result (see [2]) a totally contact umbilical semi-invariant submanifold of a manifold with a Sasakian 3-structure with dim $\mu \frac{1}{x} > 1$, for any $x \in M$, is totally contact geodesic. The main purpose of the present paper is to study the remaining cases. More precisely we prove that *M* is totally contact geodesic submanifold of \tilde{M} , if dim $\mu_x^{\perp} = 0$. If dim $\mu_x^{\perp} = 1$, $x \in M$, but *M* is not totally contact geodesic, then *M* is extrinsic sphere.

Preliminaries

Let M be a (4n+3)-dimensional differentiable manifold with an almost contact metric 3-structure (f_a, ξ_a, η_a, g) , $a \in \{1, 2, 3\}$. Then we have

a) $f_a^2 = -I + \eta_a \otimes \xi_a$, (b) $\eta_a(\xi_b) = \delta_{ab}$ (c) $f_a(\xi_b) = -f_b(\xi_a) = \xi_c$, (d) $\eta_a \circ f_b = -\eta_b \circ f_a = \eta_c$, (e) $f_a \circ f_b - \eta_b \otimes \xi_a = -f_b \circ f_a + \eta_a \otimes \xi_b = f_c$, (f) $\eta_a(X) = g(X, \xi_a)$

(g) $g(f_a X, f_a Y) = g(X, Y) - \eta_a(X)\eta_a(Y)$

for any cyclic permutation (a, b, c) of (1, 2, 3), where *X* and *Y* are the vector fields tangent to \widetilde{M} , δ is the Kronecker's delta. Then \widetilde{M} is called a manifold with a Sasakian 3-structure, if each (f_a, ξ_a, η_a, g) is a Sasakian 3-structure, i.e. (see [6]):

a)
$$\left(\widetilde{\nabla} x f_a\right) Y = g(X, Y)\xi_a - \eta_a(Y)X,$$

b) $\widetilde{\nabla} x \xi_a = -f_a X, \ a \in \{1, 2, 3\}$ (1.2)

for any vector fields X, Y tangent to \tilde{M} where $\tilde{\nabla}$ is the Levi-Civita connection on \tilde{M} . It is easy to see that $[\xi_a, \xi_b] = 2\xi_c$ for any cyclic permutation (a, b, c) of (1, 2, 3). Throughout the paper, all manifolds and maps are supposed differentiable of class C^{∞} . We denote by F(M) the module of the differentiable functions on \tilde{M} and by $\Gamma(E)$ the module of smooth sections of a vector bundle E over \tilde{M} . We use the same notations for any manifolds involved in the study.

The curvature tensor K of \tilde{M} is defined by

$$\begin{split} & K(X,Y)Z = \widetilde{\nabla}_{X} \widetilde{\nabla}_{Y} Z - \widetilde{\nabla}_{Y} \widetilde{\nabla}_{X} Z - \widetilde{\nabla}_{[X,Y]} Z, \\ & \forall X, Y, Z \in \Gamma(T\widetilde{M}). \end{split}$$

Because the structure tensor field f_a verifies (1.2a) then the curvature tensor field K verify

a)
$$K(X,Y)f_aZ = f_aK(X,Y)Z + g(f_aX,Z)Y - g(Y,Z)$$

 $f_aX + g(X,Z)f_aY - g(f_aY,Z)X$

b)
$$g(K(f_aX, f_aY)f_aZ, f_aW) = g(K(X, Y)Z, W)$$
$$-\eta_a(Y)\eta_a(Z)g(X, W) - \eta_a(X)\eta_a(W)g(Y, Z)$$
$$+\eta_a(X)\eta_a(Z)g(Y, W) + \eta_a(Y)\eta_a(W)g(X, Z).$$

c) $K(X, \xi_{\alpha})Y = \eta_{\alpha}(Y)X - g(X, Y)\xi_{\alpha}, \alpha \in \{1, 2, 3\},$ $\forall X, Y, Z, W \in \Gamma(T\widetilde{M})$ (1.3)

Now, let M be a m-dimensional Riemannian manifold isometrically immersed in \tilde{M} , and suppose that the structure vector fields ξ_1, ξ_2, ξ_3 of \tilde{M} are tangent to M. We denote by TM and TM^{\perp} the tangent bundle and the normal bundle to M, repectively. We also denote by $\{\xi\}$ the distribution spanned by ξ_1, ξ_2, ξ_3 on M. The induced metric tensor on M will be denoted by the same symbol g.

The submanifold M of a manifold with a Sasakian 3-structure is called semi-invariant submanifold (see [2]) if there exists a vector subbundle μ of TM^{\perp} such that

$$f_a(\mu) = \mu; f_a(\mu^{\perp}) \subseteq TM, a \in \{1, 2, 3\},$$

where μ^{\perp} is the complementary orthogonal bundle to μ in TM^{\perp} . It is easy to see that any real hypersurface of \tilde{M} is a semi-invariant submanifold. Next, denote $f_a(\mu_x^{\perp})$ by D_{ax} , $a \in \{1,2,3\} x \in M$. By using (1.1e) and (1.1g) it is obtained that D_{1x} , D_{2x} , D_{3x} are mutually orthogonal subspaces of xxx and have the same dimension s as the dimension of T_xM . We note that the subspaces D_{ax} , $a \in \{1,2,3\}$ do not define in general a distribution on M, but the maping.

$$D^{\perp}: x \to D_x^{\perp} = D_{1x} \otimes D_{2x} \otimes D_{3x}$$

Rev. Téc. Ing. Univ. Zulia. Vol. 27, No. 3, 2004

is a 3s-dimensional distribution on M $(s = \dim \mu_x^{\perp})$. By straightforward calculation we deduce

a)
$$f_a(D_{ax}) = \mu_x^{\perp}$$
; b) $f_a(D_{bx}) = D_{cx}$ (1.4)

for each $x \in M$, where (a, b, c) is a cyclic permutation of (1,2,3). We denote by D the complementary orthogonal distribution to $D^{\perp} \otimes \{\xi\}$ in *TM*. It follows that the distribution D is invariant with respect to the action of f_1, f_2, f_3 , that is $f_a(D) = D, a \in \{1,2,3\}$. Thus M is semi-invariant submanifold of a manifold \tilde{M} with a Sasakian 3-structure if

$$TM = D \otimes D^{\perp} \otimes \{\xi\},\$$

where D, $\{\xi\}$ and D^{\perp} are the above distributions. We note that D^{\perp} is not anti-invariant distribution (see (1.4b)).

From the general theory of Riemannian submanifolds, recall the Gauss and

Weingarten formulae

a)
$$\widetilde{\nabla}_X Y = \nabla_X Y + h(X, Y),$$

b) $\widetilde{\nabla}_X N = -A_N X + \nabla_X^{\perp} N,$
 $\forall X, Y \in \Gamma(TM), N \in \Gamma(TM^{\perp}),$ (1.5)

where h is the second fundamental form of M, A_N is the shape operator with respect to the normal section N, ∇ and ∇^{\perp} are the induced connections by $\widetilde{\nabla}$ on TM and TM^{\perp} and xx, respectively. The Codazzi equation is given by

$$g(K(X,Y)Z,N) = g((\nabla_X h)(Y,Z) - (\nabla_Y h)(X,Z)N),$$

$$\forall X, Y, Z \in \Gamma(TM), N \in \Gamma(TM^{\perp}).$$
(1.6)

It is known that if $\{e_i\}i = 1, ..., m$ is an orthonormal basis of $\Gamma(TM)$, then the mean curvature vector field of M, denoted by H, is given by

$$H = \frac{1}{m} \sum_{i=1}^{m} h(e_i, e_i).$$

The submanifold M is called totally contact umbilical if the second fundamental form h of M is expressed as follows

$$h(X,Y) = \sum_{a}^{3} \left(g(f_a X, f_a Y) H + \eta_a(X) h(Y,\xi_a) + \eta_a(Y) h(X,\xi_a) \right), \forall X,Y \in \Gamma(TM) (1.7)$$

If H = 0 and (1.7) holds, then M is called totally contact geodesic submanifold of \tilde{M} .

It is known that any sphere of a Euclidean space is totally umbilical and has positive constant curvature. Also we recall that M is an extrinsic sphere of \tilde{M} if it is totally contact umbilical and has parallel the mean curvature vector field $H \neq 0$, that is,

$$\nabla^{\perp}_X H = 0, \ \forall X \in \Gamma(TM).$$

Finally we recall some properties of semi-invariant submanifolds of a manifold \widetilde{M} with a Sasakian 3-structure, for later use (see [2])

Proposition. 1.1. Let *M* be a semi-invariant submanifold of a manifold with a Sasakian 3-structure. Then

a)
$$h(X, \xi_a) = 0;$$

b)
 $h(Z, \xi_a) = -f_a Z, \forall X \in \Gamma(D), Z \in \Gamma(f_a(\mu^{\perp}))$ (1.8)

Also we see that if M is totally contact umbilical then

$$(\nabla_X h)(Y, Z) = 3g(Y, Z)\nabla_X^\perp H,$$
 (1.9)

if Y and Z belong to $\Gamma(D)$ and $X \in \Gamma(TM)$

Main Results

Let M be a real m-diminsional submanifold of a 2n+1-dimensional manifold \tilde{M} with a Sasakian 3-structure. It was proved (see [2]) that if M is totally contact umbilical semi-invariant proper submanifold $(\dim D > 0; \dim D^{\perp} > 0)$, with $s = \dim \mu_x^{\perp} > 1$, $x \in M$ then M must be totally contact geodesic. Then it remains to study the cases s = 0 and s = 1. To this end we first prove the following general lemma.

Lemma. 2.1. Let M be a totally contact umbilical semi-invariant submanifold of a manifold \tilde{M} with a Sasakian 3-structure and $D \neq \{0\}$. Then

Rev. Téc. Ing. Univ. Zulia. Vol. 27, No. 3, 2004

the mean curvature vector field H of M is a global section of $\Gamma(\mu^{\perp})$.

Proof. Let $X \in \Gamma$ ((D) a unit vector field and $N \in \Gamma(\mu)$. By using (1.1g), (1.2a), (1.5a) and (1.7) we deduce that

$$g(H, N) = g(g(X, X)H, N) = g(\tilde{\nabla}_X X, N)$$
$$= g(\tilde{\nabla}_X f_a X - (\tilde{\nabla}_X f_a)X, f_a N) = g(h(X, f_a X), f_a N)$$
$$= g(X, f_a X)g(H, f_a N) = 0$$

which proves our assertion.

Now we see that if s = 0, then H = 0 and M is totally contact geodesic. Next, because M is not totally contact geodesic and it is supposed to be connected, then let $\alpha = \|H\| \neq 0$. Denote

a)
$$U = \frac{1}{\alpha} H$$
, b) $W_a = f_a U$, $a \in \{1, 2, 3\}$. (2.1)

Lemma. 2.2. Let M be a totally contact umbilical semi-invariant submanifold of a manifold \tilde{M} with a Sasakian 3-structure. Then we have

 $\nabla^{\perp}_{X}H \in \Gamma(\mu^{\perp}), \ \forall X \in \Gamma(TM).$

Proof. Let $X \in \Gamma(TM)$ and $N \in \Gamma(\mu)$ Now by using Lemma 2.1 we have $H \in \Gamma(\mu^{\perp})$. By using (1.1g), (1.2), (1.6b) and (1.7) we infer that,

$$g(\nabla_X^{\perp}H, N) = g(\widetilde{\nabla}_X f_a H - (\widetilde{\nabla}_X f_a)H, f_a N) = g(h(X, f_a H), f_a N) = g(X, f_a H)g(H, f_a N) = 0.$$

Therefore our assertion is proved.

Now we prove the main result of the paper

Theorem. 2.1. Let M be a proper totally contact umbilical semi-invariant submanifold of a manifold with a Sasakian 3-structure, such that dim $\mu_x^{\perp} = 1$, for any $x \in M$ and $H \neq 0$. Then M is an extrinsic sphere.

Proof. Let $X \in \Gamma(TM)$, $Y \in \Gamma(D)$. By using (1.3a) and (2.1b) we infer that

$$g(K(W_1, X)f_1Y, U) = g(f_1K(W_1, X)Y + g(X, Y)U, U)$$

$$=g(X,Y) - g(K(W_1,X)Y,W_1).$$
(2.2)

On the other hand, using (1.6) and (1.9) we deduce that

$$g(K(W_1, X)f_1Y, U) = g((\nabla w_1h)(X, f_1Y) - (\nabla_X h))$$
$$(W_1, f_1Y)U) = 3g(X, f_1Y)g(\nabla_{W_1}^{\perp}H, U) - 3g(W_1, f_1Y)$$
$$g(\nabla_X^{\perp}H, U) = 3g(X, f_1Y)g(\nabla_{W_1}^{\perp}H, U).$$
(2.3)

The relations (2.2) and (2.3) imply

$$g(X, Y) - g(K(W_1, X)Y, W_1)$$

= 3g(X, f_1Y)g($\nabla^{\perp}_{W_1} H, U$) (2.4)

But, using the symmetry properties of the tensors g, K and f_1 with respect to g, we get $g(\nabla^{\perp}_{W_1}H,U) = 0$ which together with Lemma 2.2, imply $\nabla^{\perp}_{Z}H = 0$, $Z \in \Gamma(D^{\perp})$. Next, let $X \in \Gamma(D)$ be a unit vector field. By using (1.1e), (1.1g) (1.6) and (1.9) we infer that

 $g(K(f_{1}X, f_{2}X)f_{3}X, U) = g((\nabla_{f_{1}X}h)(f_{2}X, f_{3}X) - (\nabla_{f_{2}X}h)(f_{1}X, f_{3}X), U) = 3g(f_{2}X, f_{3}X)g(\nabla_{f_{1}X}^{\perp}H, U) - 3g(f_{1}X, f_{3}X)g(\nabla_{f_{2}X}^{\perp}H, U) = 0$ (2.5)

On the other hand, using (1.1a), (1.1c), (1.3a), (1.3b), (1.6) and (1.9) we obtain

 $g(K(f_1X, f_2X)f_3X, U) = -g(f_1K(X, f_3X)f_2X, U)$ = $-g(K(X, f_3X)f_3X), U) = g((\nabla_{f_3X}h)(X, f_3X))$ $-g((\nabla_Xh)(f_3X, f_3X) = -3g(X, X)g(\nabla_X^{\perp}H, U))$ (2.6)

Now the relations (2.5), (2.6) and Lemma 2.2, imply $\nabla_X^{\perp} H = 0$, $\forall X \in \Gamma(D)$. Taking again $X \in \Gamma(D)$ a unit vector field and using (1.6), (1.7) and (1.8a), we deduce that

$$g(K(\xi_1, X)X, U) = g((\nabla_{\xi_1} h)(X, X))$$
$$(\nabla_X h)(\xi_1, X), U) = g(\nabla_{\xi_1}^{\perp} H, U)$$
(2.7)

Taking into account (1.3c), the fact that $U \in \Gamma(\mu^{\perp})$, from (2.7) and Lemma 2.2 we get $\nabla_{\xi_1}^{\perp} H = 0$. Finally we proved that $\nabla_X^{\perp} H = 0$, $\forall X \in \Gamma(TM)$ The proof is complete.

Rev. Téc. Ing. Univ. Zulia. Vol. 27, No. 3, 2004

L

Reference

- Bejancu A. *QR-submanifolds of quaternionic*, Kaehler manifolds, Chinese J. Math. 14(1986), 81-94.
- Bejancu A. and Papaghiuc N. Semi-invariant submanifolds of a Sasakian manifold, An. §t. Univ. A.I. Cuza, Iaşi 27(1981), 163-170.
- Barros M., B.Y. Chen B.Y., Urbano F. Quaternionic CR-submanifolds of and quaternionic manifolds, Kodai Math. J. 4(1981), 399-417.
- Bejancu A. Geometry of CR-submanifolds, Kluwer, Dordrecht, 1986.
- Cålin C. Semi-invariant submanifolds of a manifold with a Sasakian 3-structure, Proc. of 24th Nat. Conf. of Geom. and Top., Timişoara, Romania, July 5-9, (1994), 73-84.
- Kuo Y.Y.: On almost contact 3-structure, Tohoku Math. J., 22(1970) 325-332.

Recibido el 04 de Mayo de 2004 En forma revisada el 20 de Septiembre de 2004

Rev. Téc. Ing. Univ. Zulia. Vol. 27, No. 3, 2004