Daylighting evaluation of the prototype bioclimatic house (VBP-1)

Rosalinda González, Lesvia Pérez, Gaudy Bravo, Eduardo González y Elizabeth Tsoi

Sección Acondicionamiento Ambiental, Instituto de Investigaciones de la Facultad de Arquitectura y Diseño (IFAD), Universidad del Zulia, Apartado 526. Maracaibo 4011-A, Venezuela. Telf.: +58.61.598628. Fax +58.61.598503. rosalindag2002@yahoo.es; lesvi@cantv.net; gbravo@luz.ve; egonzale@luz.ve; elitsoi2000@yahoo.com

Resumen

El objetivo del trabajo es evaluar cuantitativa y cualitativamente el comportamiento lumínico natural en espacios de la Vivienda Bioclimática Prototipo (VBP-1), diseñada para la ciudad de Maracaibo – Venezuela (10°40.5' latitud norte). Se seleccionaron dos espacios con distintos sistemas de iluminación: elemento cenital, cerramientos de romanilla metálica y bloques de ventilación. Se realizaron mediciones de iluminancia horizontal interior, en diferentes puntos de los espacios utilizando una retícula; mediciones de reflectancia en superficies internas y de iluminancia horizontal exterior bajo condiciones de cielo cubierto; los parámetros evaluados fueron: Nivel lumínico, Factor de Luz Diurna y Factor de Uniformidad. La información fue analizada utilizando el programa estadístico SPSS-V12. En el análisis se observan dos zonas lumínicas: la primera cercana al elemento cenital (2100-4959 lux) y la segunda cercana al cerramiento de romanilla (40-460 lux) que representan 15% y 85% del área de piso respectivamente; los niveles lumínicos del área sala-comedor superan el mínimo requerido por las normas en ambas condiciones, en el área de cocina y consultorio no se alcanza el mínimo requerido. En el aspecto cualitativo se observa un alto contraste entre las zonas lumínicas. Se concluye que los espacios deberán ser acondicionados lumínicamente para el desarrollo de las actividades.

Palabras clave: Evaluación lumínica natural, vivienda bioclimática prototipo, iluminancia natural, elemento cenital, sistemas de iluminación natural.

Evaluación lumínica natural de la vivienda bioclimática prototipo VBP-1

Abstract

The aim of this paper is to evaluate the bioclimatic prototype house (VBP-1) in terms of daylighting, studying quantitative results as well as qualitative aspects. The VBP-1, was designed for Maracaibo city, Venezuela, which is $10^{\circ}40.5$ ' north latitude. Two indoor spaces were selected for the experimental procedure, featuring daylighting strategies such as a zenithal element, metallic blinds panels and a perforated wall. A mesh was defined to measure indoor horizontal illumination. There were also carried out measurements of reflectance for internal surfaces and outside horizontal illumination under a covered sky condition. The evaluated parameters were: Luminic levels, Daylight Factor and Uniformity Factor. The results were analyzed with SPSS-V12, which allowed identifying two areas of light predominance: near the zenithal element (2100-4959 lux) and near metallic blind panels (40-60 lux). These results respectively represent 15% and 85% of floor area. Light levels observed in the living room were the minimum required by norms, while in other areas (kitchen and workshop) the minimum was not reached. From the qualitative

point of view analyzed in this study, such as contrast sensation, it was predominantly high between the identified light areas. As a conclusion, indoor spaces should be improved from the daylighting point of view to allow comfort conditions for the development of human activities.

Key words: Daylighting evaluation, prototype bioclimatic house, daylighting, zenithal element, daylighting systems.

Introducción

Maracaibo, por su ubicación: 10°40.5' latitud norte, en los límites entre la zona ecuatorial y tropical es la ciudad de Venezuela con mayor consumo de energía eléctrica, debido principalmente al uso inadecuado de sistemas mecánicos en las edificaciones para lograr el confort en los espacios (iluminación artificial durante el período diurno, aires acondicionados, etc.). Esta situación se presenta porque muchas de estas edificaciones no han sido diseñadas desde el punto de vista Bioclimático ofreciendo pocas alternativas para la disminución del consumo de energía eléctrica. Con el fin de propiciar una arquitectura mas confortable e identificada con nuestro medio, así como también optimizar los recursos energéticos no renovables, la Sección de Acondicionamiento Ambiental del Instituto de Investigaciones de la Facultad de Arquitectura y Diseño de LUZ, se propone la generación y divulgación de nuevos conocimientos, técnicas y métodos que permitan avanzar en el mejoramiento de la calidad ambiental (térmica, acústica y lumínica) del espacio construido. Entre los últimos proyectos elaborados (año 2000), se encuentra la construcción de un prototipo de vivienda urbana de bajo costo y crecimiento progresivo, basada en criterios de sustentabilidad, bioclimatismo y conservación de energía, para un clima tropical húmedo. Actualmente esta se encuentra en la última etapa de construcción, para una vez finalizada dar inicio a la evaluación de las variables: confort térmico, ventilación, iluminación natural y caracterización del sistema pasivo de enfriamiento evaporativo indirecto aplicado. En este trabajo, se presenta el resultado de una evaluación lumínica realizada en el prototipo en sus condiciones actuales con el propósito de conocer el comportamiento de la iluminación natural; ya que, si bien es cierto que en el diseño de la vivienda se planteo desde un principio el acondicionamiento de los espacios para permitir el uso de la misma sin requerimientos de la iluminación arti-

ficial durante el periodo diurno, se hace necesario el conocimiento de los niveles de iluminancia para determinar si son aceptables o no según la normativa internacional. La obtención de valores se realizó de forma directa, es decir, a través de mediciones en sitio bajo condiciones de cielo real considerando los parámetros: iluminancia horizontal interior, reflectancia de superficies internas (acabado rústico) e iluminancia horizontal exterior bajo condiciones de cielo cubierto (periodo diurno), los cuales permitieron evaluar en el aspecto cuantitativo el nivel de iluminancia de los espacios (en condición de puertas y ventanas abiertas y cerradas) considerando valores estándar según normativa [1], el Factor de Luz Diurna en el espacio sala-comedor-cocina según valores recomendados en los espacios [2] y el factor de uniformidad (relación valor máximo y mínimo de iluminancia) [3] y en el aspecto cualitativo: el contraste, a partir de la observación visual directa registrada fotográficamente. Las mediciones se realizaron en espacios de la vivienda que cuentan con distintos sistemas de iluminación: elemento cenital, bloques de ventilación y cerramientos de romanilla, lo cual permitió obtener valores lumínicos de referencia que pueden ser comparados con resultados de próximas evaluaciones una vez culminado el prototipo. La metodología empleada [4, 5] está basada en el documento sobre iluminación natural que ha elaborado la agencia Internacional de Energía (IEA), conformada por países de Europa y América del Norte: IEA SHC task 21/BCS Annex 29-Daylighting in buildings [6], donde se establecen las recomendaciones para diferentes niveles de monitoreo y procedimientos de evaluación, considerando normas internacionales (CIE, IESNA, IRAM, ASHRAE) y en otras publicaciones [7-9].

Metodología de las Mediciones

Descripción de la vivienda VBP-1

La vivienda bioclimática prototipo es una vivienda urbana, de bajo costo y crecimiento pro-

gresivo con criterios de sustentabilidad, bioclimatismo y conservación de energía, en un clima tropical y húmedo. La vivienda actualmente posee 95 m², ampliables a 145 m² contemplados en un crecimiento vertical. La construcción consta de los siguientes espacios: cocina, comedor, sala familiar, dos dormitorios, una sala sanitaria, un consultorio médico, además de la disposición de un espacio central de jardín y un estacionamiento [10] (Figura 1).

Las mediciones se realizaron en dos (02) espacios de la vivienda: el consultorio y el espacio sala-comedor-cocina. El espacio sala-comedor-cocina posee un área de $41,75 \text{ m}^2$ ($4,65 \text{ m} \times$ 8,98 m) y una altura de 2,65 m, se encuentra iluminado por un elemento cenital rectangular ubicado hacia el Norte y por elementos laterales tales como ventanas de romanillas de color blanco hacia el Sur y bloques de ventilación hacia el Este. El espacio consultorio posee un área de 16,45 m² $(3,50 \times 4,70 \text{ m})$ presentando el elemento cenital rectangular y el cerramiento de romanilla de color blanco, en la misma orientación (Tabla 1). La selección se complemento con la elección de situaciones espaciales distintas en relación a las fuentes de iluminación natural, es decir, ventanas y puertas abiertas y cerradas (Figura 2).

La metodología empleada fue la siguiente:

Se definió el período de medición de la iluminancia horizontal exterior e interior: en este caso, las mediciones se realizaron en un día correspondiente al periodo lluvioso en la localidad (Mayo-Octubre), específicamente el día 23 de Mayo, por existir condiciones de cielo cubierto; condición considerada la mas desfavorable a nivel de los estudios de iluminación natural. El horario de evaluación fue solo el matutino (período comprendido entre las 8:00 a.m. y 12:00 m.) por mantenerse estables las condiciones del cielo.

Se trazó una retícula en el piso, en función de las dimensiones del espacio. La misma, fue realizada con pintura color blanco, para un mayor contraste con las características del piso. En el caso de la vivienda prototipo, específicamente en los espacios denominados como sala-comedor-cocina y en el local (consultorio), se propuso una retícula con módulos de 83×83 cm y separada a 30 ó 50 cm de la pared. La distribución gráfica de la malla o retícula propuesta, se muestra en la Figura 3.

Se realizaron mediciones de los niveles de iluminancia horizontal exterior, al comienzo y final de cada medición interior, utilizando un equi-

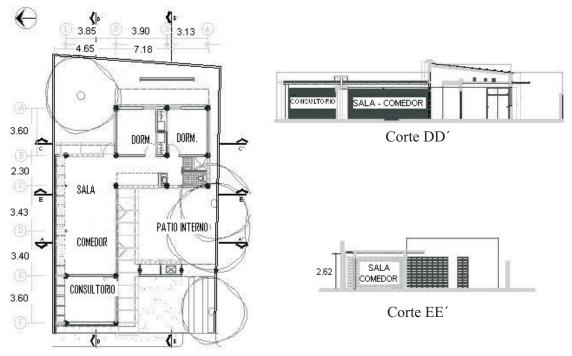


Figura 1. Vivienda bioclimática prototipo VBP-1.

Tabla 1 Descripción de los sistemas de iluminación natural

Espacio	Sistema de iluminación	Descripción	Fotografía
Sala-comedor-cocina	Cenital	Abertura rectangular de longitud: 8.98 m y de ancho 0.65 m con elementos de 10 cm de espesor, separados 0.66 m entre ellos. Posee una reja cuadriculada de color blanco.	
Sala-α	Lateral	Ventanas y puertas de romanillas de color blanco, que permite integración con el patio interno - fachada sur. El área cubierta por el cerramiento es de $15,31~\text{m}^2$ ($6,60\times2,32~\text{m}$). El sistema posee 6 hojas: dos (02) puertas plegables de 2 hojas cada una y dos (02) hojas laterales fijas combinadas con ventanas proyectantes. Bloques de ventilación – fachada este, en un área de pared de $7,42~\text{m}^2$ ($3,20\times2,32~\text{m}$)	
Consultorio	Cenital	Ídem, anterior pero longitud: 3,40 m	
	Lateral	Ventanas y puertas de romanillas de color blanco - fachada sur. Dimensiones: tres (03) hojas de 0,80 m de ancho y 2,32 de alto, donde se combinan parte fija y ventana proyectante, y una puerta de 1,00 de ancho y 2,32 de alto. El área cubierta por el cerramiento de romanilla es de 7,88 m²	

Figura 2. Situaciones espaciales estudiadas en la VBP-1

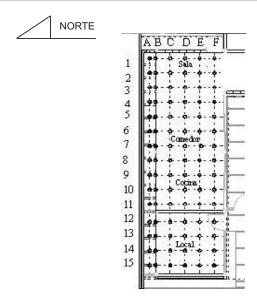


Figura 3. Trazado de la retícula.

po Hagner-Universal Photometer, modelo S2 (analógico), el cual posee dos sensores uno externo para medición de iluminancias y otro interno para medición de luminancias. Las lecturas pueden ser hechas en cd/m² o lux en 5 rangos (x1, x10, x100, x1000, x10000) y en dos escalas: 0-3 y 0-10. La sensibilidad espectral del instrumento se relaciona con la curva de visibilidad de un observador estándar CIE. El coseno de corrección compensa errores de medición de la luz oblicua incidente.

Se realizaron mediciones de los niveles de iluminancia horizontal interior, utilizando el mismo equipo Hagner-Universal Photometer. En este caso particular de estudio, se colocó el sensor sobre un perfil en "L" compuesto por un brazo vertical de 90 cm de alto y un brazo totalmente horizontal de 100 cm de largo. El sensor se fijó en el extremo opuesto a la esquina del perfil, con el propósito de quedar separado del cuerpo de la persona encargada de realizar las mediciones y evitar que las sombras afectaran la(s) lectura(s). El brazo vertical permitió mantener la altura del plano de trabajo (Figura 4).

Se realizaron mediciones de Reflectancia, sobre las superficies (sin acabados) de pared, techo y piso (Figura 5), utilizando el método iluminancia-luminancia, el cual consiste en realizar primero mediciones de luminancia de las superficies (E1) colocando la fotocelda del luxómetro de cara a la misma, a una distancia de 2 a 10 cm

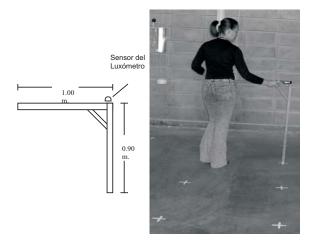


Figura 4. Elemento utilizado para mantener altura del plano de trabajo.

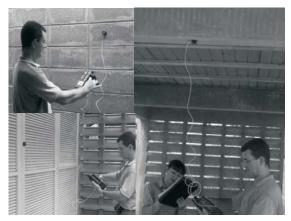


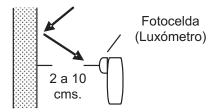
Figura 5. Mediciones de reflectancias.

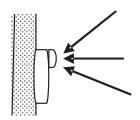
(hasta obtener una lectura estable), y luego realizar la medición de la iluminancia que reciben las superficies (E2), colocando la fotocelda orientada en sentido contrario y apoyada en la misma con el fin de medir la luz incidente (Figura 6); determinando así el factor de reflexión de la superficie (Kf) utilizando la ecuación [6, 11]:

$$K_f = E_1/E_2$$
 (100). (1)

El equipo utilizado para medir reflectancias fue un luxómetro AVO LM4 (analógico); el cual, posee un sensor de selenio incorporado que permite medir iluminancias. Las lecturas son hechas en lux y posee dos escalas: 0-500 y 0-2000. La sensibilidad espectral del instrumento se relaciona con la curva de visibilidad de un observador estándar CIE. El coseno de corrección compensa errores de medición de la luz oblicua incidente.

Se realizó un relevamiento fotográfico con una cámara Digital, modelo Kodak, 6X 200M, 3X optical, 2X digital, que permitió el análisis de la situación lumínica desde el punto de vista cualitativo.


Posteriormente a la obtención de los registros, se realizaron las siguientes actividades:


Se realizó una comparación entre los valores obtenidos en la medición y los valores estándar según la actividad según IES [1] (Tabla 2).

Se determinó el Factor de Luz Diurna (FLD) para condiciones de cielo cubierto, expresados en porcentaje como la relación que se establece entre la iluminancia interior (lux) y la iluminancia exterior (lux) sin obstáculos:

$$FLD = Ei / Ee * 100,$$
 (2)

realizando posteriormente una comparación entre los valores obtenidos y los valores recomendados según el espacio [2] (Tabla 3).

- 1) Medición de la luminancia de la superficie (E1)
- 2) Medición de la iluminancia que recibe la superficie (E2)

Figura 6. Método iluminancia-luminancia.

Tabla 2 Niveles de iluminancia según la actividad

Espacio	Actividad	Lux
Comedor	Cenar	160
Sala	Conversación, relajación, entretenimiento	110
	Preparación de comida y lavado	1600
Cocina	Servir y otras tareas no críticas	540
Consultorio	Sala general para examinar y para tratamiento	540
	Tabla para examinar	1100

Fuente: IES.

Tabla 3 Niveles generales o mínimos recomendados del factor de luz diurna en edificaciones (Código I.E.S 1961/B.S.I. C.P. 3/1 A (1964)

Tipo de edificación	Factor de luz diurna recomendado (%) no menor que	Recomendaciones
		Vivienda
Cocina	2	Sobre al menos 50% del área de piso (mínimo de 50 ft²)
Sala	1	Sobre al menos 50% del área de piso (mínimo de 75 ft²)
Dormitorios	0.5	Sobre al menos 75% del área de piso (mínimo de 60 ft²)

Fuente: Daylighting Hopkinson et al, 1966. Pág. 22.

Se determinó el factor de uniformidad para compararlo con los valores recomendados (Tabla 4) correspondientes a los límites de heterogeneidad del campo luminoso [3]. Esto permitirá evaluar el efecto de contraste producido por las variaciones de iluminación en un plano dado, que puede ser más o menos aceptable en relación con el destino del espacio.

Para determinar el factor de uniformidad sobre el plano de trabajo se utilizó la siguiente relación:

$$Fu = I_{min} / I_{max} , \qquad (3)$$

donde Fu = Factor de uniformidad; I_{min} = Nivel de iluminancia mínimo y I_{max} = Nivel de iluminancia máximo.

Resultados

De las mediciones realizadas en campo se obtuvieron valores de iluminancia horizontal exterior e interior para el espacio sala-comedor-cocina, en condición de ventanas y puertas cerradas (Tabla 5, Figura 7) y en condición puertas abiertas (Tabla 6, Figura 8), y para el espacio de Consultorio también en ambas condiciones (Tablas 7 y 8). El programa utilizado para el procesamiento de la información fue el Microsoft Excel 2000 y para el análisis de la información el programa estadístico para Windows SPSS-V12, el cual permite realizar análisis de tipo descriptivo e inferencial. En esta investigación, se utilizó para el análisis descriptivo del conjunto de datos y para obtener conclusiones de los mismos.

Tabla 4 Heterogeneidad del campo luminoso

Factor de uniformidad sobre el plano de trabajo						
Normal	Trabajo fino	Iluminancia localizada				
Mayor de 0,3	Mayor de 0,6	Mayor de 0,8				

Fuente: Acondicionamiento Natural y Arquitectura. Puppo, Ernesto; Puppo, Giorgio A. Página 111.

Tabla 5 Valores de iluminancia horizontal exterior e interior con ventanas y puertas cerradas en el espacio sala-comedor-cocina

	Ilumina	ancia horizon	tal exterior – Con	dición: cielo c	ubierto	
Inicio de la _	Hora: 10):14 a.m.	_ Final de la _	I	Hora: 10:25 a.n	n.
medición	Nivel (lux	x): 38000	medición	N	livel (lux): 4500	00
		Ilumin	ancia horizontal i	nterior		
	A	В	С	D	E	F
1	2750	2300	220	140	160	480
2	4050	3400	300	160	260	1100
3	4400	3000	330	160	300	1350
4	4600	3900	340	165	150	105
5	4700	3900	370	170	100	90
6	4750	4100	370	170	100	90
7	4800	3700	370	180	110	90
8	4700	3900	370	170	110	90
9	4700	4100	370	180	100	90
10	4700	3900	360	150	90	80
11	4500	3500	270	120	80	75

Rev. Téc. Ing. Univ. Zulia. Vol. 31, No. 1, 2008

Se determinó el Factor de Luz Diurna para el espacio Sala-comedor-cocina, obteniéndose los valores presentados en las Tablas 9 y 10.

Se determinó el factor de uniformidad en los espacios sala-comedor-cocina y consultorio en condición de cerramientos abiertos y cerrados (ver Tabla 11).

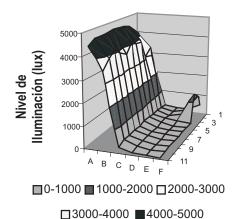
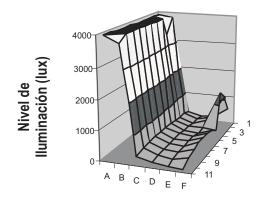



Figura 7. Valores de iluminancia horizontal interior con ventanas y puertas cerradas en el espacio sala-comedor-cocina.

Análisis de Resultados

En el aspecto cuantitativo

En el espacio sala-comedor-cocina, se observan dos zonas lumínicas claramente diferenciadas (Figura 9): la primera zona cercana al elemento cenital (columnas A y B) con valores com-

□0-1000 □1000-2000 □2000-3000 □3000-4000

Figura 8. Valores de iluminancia horizontal interior con puertas abiertas en el especio.

interior con puertas abiertas en el espacio sala-comedor-cocina.

Tabla 6 Valores de iluminancia horizontal exterior e interior con puertas abiertas en el espacio sala-comedor-cocina

Inicio de la	Iluminancia horizont Hora: 10:30 a.m.		Final de la		Hora: 10:37 a.m.		
medición	Nivel (lux	k): 45000	medición	N	livel (lux): 4500	00	
		Ilumin	ancia horizontal i	nterior			
	A	В	С	D	E	F	
1	3000	2300	255	170	190	530	
2	4250	3900	340	190	320	1100	
3	4700	3350	360	200	360	1400	
4	4850	4350	410	230	230	200	
5	4850	4200	430	250	210	330	
6	4900	4300	440	270	250	390	
7	4850	4400	440	270	260	440	
8	4950	4200	460	260	230	460	
9	4900	4150	440	250	220	390	
10	4900	4000	410	230	165	305	
11	4600	3800	340	190	140	120	

Rev. Téc. Ing. Univ. Zulia. Vol. 31, No. 1, 2008

Tabla 7 Valores de iluminancia horizontal exterior e interior con ventanas y puertas cerradas en el espacio Consultorio

		Ilumina	ancia horizontal e	exterior				
Inicio de la	Hora: 10):00 a.m.	_ Final de la _	I	Hora: 10:10 a.n	n.		
medición	Nivel (lux): 29500		medición	Nivel (lux): 35000				
	Iluminancia horizontal interior							
	A	В	С	D	Е	F		
12	2650	2100	240	110	60	45		
13	3400	2700	300	120	45	40		
14	3500	2800	310	120	44	44		
15	3600	2750	240	84	40	45		

Tabla 8 Valores de iluminancia horizontal exterior e interior en ventanas y puertas abiertas en el espacio Consultorio

		Ilumin	ancia horizontal e	exterior			
Inicio de la	Hora: 10	:10 a.m.	_ Final de la _	I	Hora: 10:14 a.m.		
medición	Nivel (lux): 35000		medición	N	Nivel (lux): 38000		
		Ilumin	ancia horizontal i	nterior			
	A	В	С	D	Е	F	
12	3000	2400	330	200	190	320	
13	3950	3200	375	210	220	300	
14	4000	3300	390	200	200	400	
15	3950	3100	290	150	170	400	

prendidos entre 2300 y 4959 lux y la segunda cercana al cerramiento de romanilla (columnas C, D, E, F) con valores comprendidos entre 75 y 460 lux, que representan 15% y 85% del área de piso respectivamente; en la columna "F" filas 1, 2 y 3 existe un incremento del nivel lumínico debido al espacio para la escalera (abertura).

En el consultorio, los valores de la primera zona se encuentran comprendidos entre 2100 y 4000 lux y la segunda con valores comprendidos entre 40 y 400 lux (Tablas 7 y 8). Los niveles más altos se obtuvieron a través del elemento cenital ya que, este tipo de sistema abarca una gran parte del cielo sin obstrucción.

Los valores promedios obtenidos en el espacio sala-comedor-cocina en la condición de puertas cerradas es de 4016 lux en la primera zona y de 242 lux aproximadamente en la segunda zona y en condición de puertas abiertas 4259 y 343 lux aproximadamente. En el espacio de consultorio los valores promedios en condición cerradas es de 2938 y 118 lux y en condición abiertas 3363 y 272 lux aproximadamente. Se observa que los valores promedios más altos se encuentran en la primera zona y los más bajos en la segunda.

En relación a la condición abierta y cerrada de los cerramientos de romanilla se observa que el nivel lumínico de los espacios se incrementa

Tabla 9
Factor de Luz Diurna para el espacio sala-comedor-cocina (condición ventanas y puertas cerradas)

	Factor de luz diurna ((Ei/Ee)*100)						
	A	В	С	D	E	F	
1	7,24	6,05	0,58	0,37	0,42	1,26	
2	10,66	8,95	0,79	0,42	0,68	2,89	
3	11,58	7,89	0,87	0,42	0,79	3,55	
4	12,11	10,26	0,89	0,43	0,39	0,28	
5	12,37	10,26	0,97	0,45	0,26	0,24	
6	12,50	10,79	0,97	0,45	0,26	0,24	
7	12,63	9,74	0,97	0,47	0,29	0,24	
8	12,37	10,26	0,97	0,45	0,29	0,24	
9	12,37	10,79	0,97	0,47	0,26	0,24	
10	12,37	10,26	0,95	0,39	0,24	0,21	
11	11,84	9,21	0,71	0,32	0,21	0,20	

Tabla 10 Factor de Luz Diurna para el espacio sala-comedor-cocina (condición puertas abiertas)

Factor de luz diurna ((Ei/Ee)*100)						
	A	В	С	D	E	F
1	6,67	5,11	0,57	0,38	0,42	1,18
2	9,44	8,67	0,76	0,42	0,71	2,44
3	10,44	7,44	0,80	0,44	0,80	3,11
4	10,78	9,67	0,91	0,51	0,51	0,44
5	10,78	9,33	0,96	0,56	0,47	0,73
6	10,89	9,56	0,98	0,60	0,56	0,87
7	10,78	9,78	0,98	0,60	0,58	0,98
8	11,00	9,33	1,02	0,58	0,51	1,02
9	10,89	9,22	0,98	0,56	0,49	0,87
10	10,89	8,89	0,91	0,51	0,37	0,68
11	10,22	8,44	0,76	0,42	0,31	0,27

Rev. Téc. Ing. Univ. Zulia. Vol. 31, No. 1, 2008

con las ventanas abiertas, tal como se muestra en la Tabla 12.

El incremento más alto del nivel lumínico. se observa en las zonas cercanas a los sistemas de iluminación (abertura cenital y cerramiento de romanilla). En la zona comprendida entre las columnas A y B el incremento es mas alto que en la zona comprendida entre las columnas C y D, ya que, en este caso existe una exposición más directa de la iluminancia del cielo (sin obstrucción), donde se observan proyecciones de luz (Figura 2) y además existe una fuente secundaria de luz por reflexión (pared medianera); en el segundo caso el cerramiento de romanilla se encuentra hacia el patio interno donde existen ciertas obstrucciones (elemento horizontal de protección solar, árbol, etc.). En la zona intermedia (columnas C y D) el incremento se obtuvo más o menos constante (con pequeñas diferencias).

Se observa que las mediciones de iluminancia horizontal interior (lux) en el espacio sala-comedor (área comprendida entre las filas 1 y 8) obtenidos bajo condición de cielo cubierto con una iluminancia horizontal exterior promedio de 38.813 lux y valores de reflectancia en las superficies sin acabado: pared medianera 21%, pared cocina 28%, piso 25% y techo 26%, coinci-

den o superan en un 80% de los puntos, el mínimo requerido por las normas IES [1] en condición cerradas y en un 100% en condición abierta; se observa que los valores en las columnas A y B exceden hasta 40 veces el valor mínimo recomendado. En el área de cocina (área comprendida entre las filas 9 y 11) y en el consultorio no se alcanza el mínimo requerido; sin embargo, los valores en las columnas A y B, exceden entre dos y tres veces el valor mínimo mas alto según la actividad (Tabla 2).

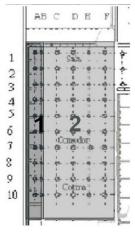


Figura 9. Zonas lumínicas.

Tabla 11 Factor de uniformidad para los espacios sala-comedor-cocina y consultorio.

Espacio	Condición del cerramiento	Aplicación de la ecuación	FU	
Cala annual annual annual	Cerradas	Fu = 75 lux/4800 lux	0,02	
Sala-comedor-cocina	Abiertas	Fu = 120 lux/4950 lux	0,02	
0 14 1	Cerradas	Fu = 40 lux/3600 lux	0,01	
Consultorio	Abiertas	Fu = 150 lux/4000 lux	0,04	

Tabla 12 Incremento de la iluminancia en los espacios: sala-comedor-cocina y consultorio en condición: cerramientos de romanilla abiertos

Espacio _	Incremento del nivel lumínico (promedio según valores obtenidos en cada columna)							
	A	В	С	D	E	F		
Sala-comedor- cocina	191 lux	295 lux	60 lux	68 lux	92 lux	184 lux		
Consultorio	438 lux	413 lux	74 lux	82 lux	148 lux	312 lux		

Los valores obtenidos como Factor de Luz Diurna en el área de sala-comedor-cocina en ambas condiciones (abiertas y cerradas) se encuentran por debajo del valor recomendado (2% y 1%) en más del 50% del área del piso, a excepción del área cercana al elemento cenital donde los valores se encuentran muy por encima de lo recomendado: en el área de sala (columnas A y B) hasta 12 veces por encima del valor y en el área de cocina hasta 6 veces el valor.

El Factor de uniformidad se encuentra muy por debajo de los valores recomendados.

En el aspecto cualitativo se observa un alto contraste entre la zona lumínica cercana al elemento cenital (aproximadamente 15% del área de piso) y la cercana a los cerramientos de romanilla, (aproximadamente 85% del área de piso) (Tabla 3).

Conclusiones

La vivienda deberá ser acondicionada desde el punto de vista del confort lumínico (aspecto cuantitativo y cualitativo):

En el aspecto cuantitativo, los niveles de iluminancia horizontal registrados en el interior de la vivienda bioclimática Prototipo VBP-1 en condición de cielo cubierto, superan hasta 40 veces los valores recomendados por la normativa en el espacio sala-comedor en un 15% del área de piso (cercana al elemento cenital), en el resto del espacio (85%) se cuenta con el nivel lumínico para realizar las actividades según valores indicados en la normativa. En el área de cocina y en el consultorio los valores se encuentran hasta 4 veces por debajo de los valores recomendados en un 85% del área de piso, y en un 15% se exceden hasta 4 veces el valor mínimo recomendado mas alto. El área de Consultorio deberá ser acondicionada lumínicamente, ya que, los requerimientos lumínicos son mayores de acuerdo a la actividad a desarrollar.

En el aspecto cualitativo, la vivienda no posee actualmente las condiciones lumínicas adecuadas para realizar las actividades, ya que, existe un alto contraste evidenciado en la gran diferencia entre los valores máximos y mínimos de iluminancia horizontal interior y los valores de heterogeneidad obtenidos los cuales se encuentran muy por debajo de los niveles recomendados. Este efecto de contraste deberá ser controlado, para evitar problemas de desadaptación, lo cual puede ocurrir cuando el ojo se dirige repetidamente a zonas con fuerte diferencia de iluminación, con lo cual experimenta rápidas dilataciones y contracciones de la pupila que generan cansancio visual [3].

Recomendaciones

Para evitar problemas de desadaptación en el entorno visual se recomienda que la diferencia de luminancias se mantenga dentro de los límites aceptables, para ello, es necesario crear un balance entre las luminancias, evitando tanto los fondos excesivamente oscuros y la distracción por alrededores brillantes. La elección de colores claros (luminosos) para los revestimientos y terminaciones del cielorraso, muros y equipamiento (muebles y maquinas) de un local, permitirá obtener un mayor aprovechamiento de la cantidad de luz que recibe el lugar de trabajo, mejorara la difusión de la luz y suavizara las sombras, permitiendo eliminar los contrastes excesivos y minimizar el riesgo de deslumbramiento por reflejos [12]. Utilizar iluminación adicional en el entorno visual desde otras fuentes de luz, para incrementar la luminancia de todas las superficies interiores, proporcionando adecuadas reflectancias y adecuada distribución de la luz. Es importante señalar, que se deben tomar previsiones en la selección del acabado de las superficies "bañadas de luz" por el elemento cenital, ya que, puede ser causa de deslumbramiento.

Referencias Bibliográficas

- 1. IES Lighting Handbook. Illuminating Engineering Society. 5ta. Edición. Sección 7, 9, 10 y 15. (1972).
- Hopkinson, R., Petherbridge, P., Longmore,
 J. Daylighting. Heinemann: London. Pág. 1-26, 333-351, 354-373, 431-452. (1966).
- Puppo, E., Puppo, G. Acondicionamiento Natural y Arquitectura. Editorial Marcombo,
 S.A. de Boixareu editores. Barcelona. P. 98-122. (1971).
- 4. González, E.; Bravo, G.; Tsoi, E.; Pérez, L.; González, R. "Caracterización térmico-lumínica de la vivienda bioclimática prototipo

- VBP-1 y del sistema pasivo de enfriamiento evaporativo indirecto aplicado. Definición teórico- metodológica" (Monografía). Instituto de Investigaciones de la Facultad de Arquitectura y Diseño, L.U.Z. Maracaibo, 2003.
- González R., Pérez, L., Bravo, G., González, E., Tsoi, E. Propuesta teórica metodológica para la caracterización y evaluación lumínica natural. Revista Técnica de Ingeniería. Volumen 29, No. 3 (2006).
- Atif, M.R.; Love, J.A.; Littlefair, P. Daylighting Monitoring Protocols & Procedures for Buildings. Institute for research in construction (IRC). International Energy Agency. Solar Heating & Cooling Programme. IEA SHC TASK 21 / ECBCS ANNEX 29 (1997).
- 7. González Matterson, M.; Kralj, M. E.; Martín Evans, J. Evaluación de condiciones de iluminación natural con luz cenital. Mediciones en edificios de la ciudad de Buenos Aires. Centro de Investigación Hábitat y Energía, Facultad de Arquitectura, Diseño y Urbanismo. Revista Averma. Universidad de Buenos Aires. Vol. 4. ISSN 0329-5184. (2000).

- 8. Fontoynont, M., Berrutto, V. Daylighting performance of buildings: monitoring procedure. Right Light 4. Vol.2. (1999). 119-127.
- Evans J. M. y Torres S. El recurso de iluminación natural en Buenos Aires, resultados de un año de mediciones. Centro de Investigación Hábitat y Energía, Facultad de Arquitectura, Diseño y Urbanismo. Revista Averma. Universidad de Buenos Aires. Vol. 4. ISSN 0329-5184 (2000).
- González, E. Una vivienda urbana sustentable para familias de bajos recursos en clima tropical húmedo. Memorias COTEDI 2000. Conferencia Internacional sobre confort y comportamiento térmico. Pag. 93. (2000).
- 11. Norma Oficial Mexicana NOM-025-STPS (1999).
- Mascaro, L. (1977). Luminotecnia-Luz Natural. Ediciones Summa. Argentina. Págs. 23-25.

Recibido el 11 de Abril de 2005 En forma revisada el 26 de Noviembre de 2007