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Abstract

The important issue on self-tuning control includes the stability, performance and convergence of
involved recursive algorithms. Based on a Lyapunov function, this paper proves the stability of implicit
self-tuning controllers, combining recursive parameters estimation with a forgetting factor and general-
ized minimum variance criterion, for time-varying systems. The system parameters are considered to be
changing continuously but slowly or changing abruptly but infrequently. The analysis is extended to the
case where the system model is subject to system and measurement noises. The main results are the theo-
rems which assure the overall stability of the closed-loop system, which are proved in a straight way com-
pared with previous stability analysis results.

Key words: Self-tuning control, generalized minimum variance control, sliding-mode control,
discrete-time systems, time-varying systems, Lyapunov function.

Estabilidad de controladores auto-ajustables
para sistemas variantes en el tiempo basada
en funciones Lyapunov

Resumen

Los problemas mas importantes de los controladores auto-ajustables, se refieren a la estabilidad,
desempeno y convergencia de los algoritmos recursivos involucrados. Basandose en funciones Lyapunov,
este trabajo prueba la estabilidad de los controladores auto-ajustables implicitos, combinando la estima-
cién recursiva de los parametros del controlador incluyendo el factor de olvido con el criterio de variancia
minima generalizada, aplicados a los sistemas variantes en el tiempo. Se considera que los parametros del
sistema cambian continua pero lentamente o cambian abrupta pero infrecuentemente. El analisis tam-
bién se extiende al caso donde el modelo del sistema incluye ruido. Los principales resultados presenta-
dos en este trabajo son los teoremas que aseguran la estabilidad global del sistema en lazo cerrado, los
cuales son probados en una manera mucho mas directa comparando con resultados previos en el area.

Palabras clave: controladores auto-ajustables, control de varianza minima generalizada, control
por régimen deslizante, sistemas discretos, sistemas variantes en el tiempo, fun-
cion de Lyapunov.
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1. Introduction

Astrom [1] showed, in a stochastic way, that
a self-tuning minimum variance control is opti-
mal for a general CARMA (Controlled Auto-Re-
gressive Moving Average) model, even though the
noise parameters are not explicitly estimated;
however the proof begins with the assumptions
that parameters convergence is assured (not nec-
essarily to the optimal values) and the system
model is minimum phase.

By extending the minimum variance crite-
rion (MVC) of [1], Clarke [2] propose the general-
ized minimum variance control (GMVC) for
non-minimum phase systems by the use of a
cost function which incorporates system input
and set-point variation, and a control law was
derived for a system model with known parame-
ters. The parameters of the control law for the
real systems with unknown parameters are esti-
mated using a recursive least-squares (RLS) al-
gorithm. Furuta [3] proposed a discrete-time
variable structure system (VSS) approach to the
case where system parameters are unknown;
the VSS is designed based on MVC or GMVC,
and a recursive estimator of controller parame-
ters is applied.

Based on key technical lemmas, the global
convergence of implicit self-tuning controllers
was studied for discrete-time minimum phase
linear systems in a seminal paper by Goodwin
[4] and for explicit self-tuning controllers in the
case of non-minimum phase systems by
Goodwin [5]. From the viewpoint of sliding mode
control (SMC), Patete [6, 7] gave a complete proof
for the stability of implicit self-tuning control-
lers based on GMVC for minimum or non-mini-
mum phase systems by the use of a Lyapunov
function. However, all these researches have
been done for time-invariant systems (TIS).
Clark [8] studied the stability of self-tuning con-
trollers for time-invariant systems subject to
noise, based on the idea of describing the system
in a feedback form and using the notion of
dissipative-real systems. However no rigorous
stability proof was given.

The purpose of this paper is to analyze the
stability of the implicit self-tuning controller for
discrete time-varying systems (TVS) and discrete
time-varying systems subject to system and mea-

surement noises. The criterion considered is the
minimization of an auxiliary controlled variable
based on the concept of sliding mode control to
yield the system stability.

The paper is organized as follows: in
section 2, the GMVC based on the sliding mode
control concept [3] is reviewed. Section 3 studies
the recursive estimation of controller parameters
based on GMVC to deal with time-varying sys-
tems. Simulation examples are given in section 4.
Some remarks conclude the paper.

2. Generalized minimum
variance control

The controller design with the GMVC based
on the sliding mode control concept, in the case
of time-invariant systems [3, 6, 7], is reviewed in
this section. The discrete-time single-input sin-
gle-output (SISO) time-invariant system is con-
sidered. The representation of the nominal sys-
tem with input u,. and output y,. is given by:

Ao(z_l]yk = z_dBO(z_l)uk, (1)

where A%(z™!) and B°(z™!) have no common fac-
tors and z denotes the time-shift operator
z 'y, = y,,. In the Laplace transformation, the

time-shift operator is described as z = e*To where
T, is the sampling period (for simplicity, and
without loss of generality, T, = 1is assumed). In
order to derive the nominal control law the poly-
nomials A°(z™!)and B°(z™!) are assumed to have
constant and known parameters, represented
by: A%z Yy, =1+ az '+ +a,z™" and
Bz Yy, =1+ bz '+..4+b,z™™, where b, = 0.
The delay step, d, is also assumed to be known.
The control objective is to minimize the variance
of the controlled variables s;., 4, defined in the de-
terministic case as:

Sird = CZ N Ypera = Tierd) + Q27 Dy, 2)

Ly

where the polynomials C(z ')y, =1+ ¢z~
czz_2+...+cnz_" and Q(z_l) =q,(1 —z Y are to be
designed, so that the specifications written below
should be satisfied. The error signal e, is defined

as e, = Yy — ., where r;. is the reference signal.
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The idea is similar to the discrete-time sliding
mode control [3].

The polynomial C(z™Y) is chosen Schur and

should be designed by assigning all characteris-
tic roots inside the unit disk in the z-plane. Equa-
tion (2) is rewritten as:

Sied = Gz My + Fz Yy — Clz rirqs 3)

where the polynomial G(z™Y) is defined as
Glz'Y) = E(z )Blz )+ Q(z ™), ie. Gz ™) = go +
912_1"‘---"‘gm+d—1Zli_1
E(z ) =ey+ez '+ . +e, 27V and F(z7) =

o+ fiz7 4.+ £z~ ™Y satisfy the equality:

and the polynomials

Ciz™Y) =A%z HE(EZzH + z 9F(z7Y). 4

Then the GMVC input required to vanish
Si+q in Eq. (2) is given by:

w, = =Gz~ ) [Flz Yy - Oz Dreeal. (5)

where the polynomials C(z~ 1 and Q(z‘l) are cho-
sen to make the control system satisfy the follow-
ing Lemma.

Lemma [9]: The necessary and sufficient
condition for the control input to make s;.,; =0
stable is that all the roots of the polynomial
Tz Y):

T°z™") = A%z MHQ(z )+ B°(z HCc(z™!) =0, (6)

belong to the open unit disk, and the polynomials
(Q.C),(A°,C), (B® Q) have no common zeros out-

side of the unit disk.

The uncertainty in system characteristics
leads to a certain family of models rather than to a
single system model to be considered. In the case
where the uncertainties come from parametric
perturbations, we have a family of closed-loop
characteristic polynomials T(z~ 1) instead of a sin-
gle nominal characteristic polynomial T%(z™Y).
Defining q = z ! = e, which maps the stable
zone inside the unit circle into the outside in the
z-plane, then T(z™ 1) is defined as:

T(q) = T°(q) + »pT(q), @)

where y is a positive constant representing the
margin of perturbation and pT(q) € Q gives a set
of admissible perturbations defined as
Blw) = set(ypT(e_j‘”) [0<ws< 27[) For robust sta-

bility analysis, we may use the method by
Tsypkin [10] for closed-loop discrete-time sys-
tems, which involves the modified characteristic
locus criterion.

Criterion [10]: For robust stability of
closed-loop discrete-time parametric systems, it
is sufficient that

T(e™ )

Qe )Y o, + [cte™)| 3 B,
i=0 =0

T(e ) = 8)

does not enclose and does not intersect the criti-
cal circle o of radio y and centered at the origin,
i.e. o(y,0), when w moves from O to 2z. ¢; and f,
are the range of parametric perturbations, de-

a —a, -b
finedasa, = 127/71 B = blzyfl
a,, b, are the upper and lower bounds of ; and by,

respectively.

.Wherea;, b, and

3. Self-tuning control
of time-varying systems based
on GMVC

It has been proved [6, 7] that the following
self-tuning algorithm assures the overall stability
for SISO time invariant systems, when the sys-
tem constant parameters are not accurately
known, by the recursive estimation of the con-
troller parameters F(z™Y) and G(z™Y), under the

following assumptions.

Assumptions 1: a) The order of the system
in Eq. (1) is known. b) The delay step d is known.
¢) Polynomial C(z™ ') is Schur. d) Lemma 1 is sat-
isfied. e) Criterion 1 is satisfied. f) The given refer-
ence signal ris bounded.

The self-tuning control based on GMVC al-
gorithm is given by the following recursive esti-
mation equations:

Rev. Téc. Ing. Univ. Zulia. Vol. 34, No. 2, 2011



Stability of Implicit STC for time-varying systems

151

De1Pi—a
1+ @ dl 1P re-a

[s,c +Clz Yy - (ﬂ_dék_l], 9),

ék =ék_1+

D1 se-a®P -l i1

r.=I_,—
R 14 ¢ e rea

(10)

where ¢ = Ui Uers -+ Uronsts Wi -+ » U111
the vector containing measured output and con-
trol signal data. 6" = [fo, f1, fa-1- 90s 91 Gmra1]1S
the vector containing the parameters of F(z™Y

and G(z™'), and o7 = [jo’ JAcl’ JAcn—p 90> 91> Gmsa-11is
the estimate of 6.

Then the controller includes identified pa-
rameters as follows:

U, = —G(z‘l)_l[ﬁ‘(z_l)yk —C[z_l)rk+d], (11)

where ﬁ‘(z‘l) and G(z‘l) are estimates of F(z™})
and G(z™ "), respectively.

In several adaptive problems it is of interest
to consider the situation in which the parameters
are time-varying. From now on, system parame-
ters are assumed to change abruptly but infre-
quently or changing continuously but slowly.
Then, the family of system models is represented
by:

A(z_l)yk = z_dB(z_l)uk, (12)

where (1) is the nominal system model of (12).
The self-tuning control based on GMVC algo-
rithm presented is extended to the case where a
forgetting factor is introduced into the recursive
estimate equations (9) and (10) to deal with this
type of time-varying systems.

Assumptions 2: a) The unknown time-
varying system parameters are assumed all uni-
formly bounded away from infinity. b) The
time-varying controller parameters vector 6, has
the following model, 6, = 6,._, + n,, where#, isa
zero mean time-varying signal. Thus, E{6,} =
E{0,_,} with E” denoting the expectation with re-
spect to 7.

Theorem 1

Recursive estimates of controller parame-
ters based on generalized minimum variance cri-
terion with a forgetting factor: Given a positive
definite matrix Iy, a parameter u(0 < u < 1) and
an initial parameters vector éo, if the estimate ék
of the controller in Eq. (11) is given by the recur-
sive equations:

[ 19r—a
J T P T

[Sk + C(Z_l]rk - ¢’£*dék*1]’ (13]

9k =0k—1+

Dei®ra®ie-dlicn

L =They ’
J T P T

(14)

under Assumptions 1 and 2, then the overall
closed-loop time-varying system combining
equations (11), (13), (14) and equation (12) gives
the overall stability in the sense of the expecta-
tion with respect to #,.

Proof: Using the controllaw in Eq. (11), $;.. 4

may be rewritten as:

Skid = PR0k_a- (15)
where,
’ék = 0 - ék' (16]

The candidate Lyapunov function is given
by:

1 lop =
E,[AV,} = E”{Esﬁ + 5e)irk lek}. (17)

The time difference of Eq. (17) is considered
as follows:

E, AV} = E AV —uV,_,} (18)
where p is the forgetting factor, O < u < 1. Then,

for AV, the following is derived:

1 1 1~p 1~
AV = ési _Esi—1ﬂ+éeql;rklek -

1~ o~
9 OzTc—lrk—l19k—1ﬂ (19)
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L 1
AV, = _i(ek —01) Ty (0) — 0+ isi B
1 2 INT -1 -1 0
o Sie-1#4 + Eek(rk + )0 —
17
01110 1t 120
L~ = re1 3 _5 .
AV, = _5(9;{ =011 Tiesy (0 = gy ) + s +
o I
5 ORI + Ty = B0y +

1 1
Oilic10 e _55%—1/‘ _55% . 21)

From Eq. (15), s% is:
Sk = 01 PP k- k- (22)

Substituting Eq. (22) into Eq. (21), the fol-
lowing relation can be obtained:

1~ - o~ = 1
AV = _5(91{ =01 T (0) = 0, + ési—h“ +

Ten -
2 03T =Tttt = Prea®le—a)Oc +

O 0 = 01y + Ty 1 bt )
(23)

The third and fourth terms in the
right-hand side of Eq. (23) may be equal to zero as
follows:

From the third term on the right-hand side
of Eq. (23),
I =T = $rea®iea =0, (24)

I = (FE—IW _¢k—d¢7l;—d)_l' (25)

Equation (25) yields Eq. (14) by the matrix
inversion lemma. From the fourth term of Eq. (23):

0k =011+ T 1fre_abhoau” ' =0. (26)

Using Eq. (3) and Eq. (16), and substituting
them into Eq. (26) the following is obtained:

O =01+ 1 T 1P r—a(Sic = Pre—abic + Clz™ i) +

O =01 27

(U+ Pledlie1Br-a)Ok = (U+ @l dlie1P i) 1 +
U0y —ubi_y + L 19i_q
(s + Clz™ e = Pie_alicr)-

(28)

Finally, by taking the expectation with re-
spect to 7, in (28), Eq. (13) is derived.

Then, by using of the recursive equations
(13) and (14) for a positive bounded V), E, {AV }is
proved negative semi-definite, i.e. E,7 {AV, } =0,
as follows:

Using the recursive equations (13) and (14)
into (23), for k =1 the following relation is ob-
tained

E Vi —uVol =
1 |
En{—isgy —5 01 - 0,)"T56, - 90)/,¢}. (29)
Initially 6, — 0, # O, then E, {V;, — uVo} < 0,
which gives E,7 Vil < E,?{,uVO}. Fork =2:

1 1~ ~ o i o~
15,7{V2 + Esf,u+ 5(92 -0)"17 (6, - el)ﬂ} =

E {uV)} < E, {1*V,}. (30)

Then, for a large N the following relation is
derived:

1 - - IR
En{VN + ) gz(si—l +(0) = 01-1) T2y (0 — 9k—1))

x #N—k“} < E, {u"Vy}. (31)

Equation (31) implies that u" approaches to
zero as N goes to infinity; then the left-hand side
of Eq. (31) will also vanish. Thus, sy and
G N~ [ n—1) vanish as N approaches to infinity.

Since the polynomial Q(z_l) is designed to
satisfy Eq. (6) and Eq. (7) for a bounded reference
., both input u,;. and output y, are shown to be
bounded, i.e. multiplying Eq. (2) by A(z™!) and
using Eq. (12), the following expression for the
control signal u,. is derived:
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B Alz™")
T Az e )+ Clz Bz )
Az Hez™h -
Az HQ(z Y+ Clz Bz~ Y ¢

Sie+a T

(32)

Si+q Vanishes in the sense of expectation with re-
spect to ;. as k goes to infinity, as shown in Eq.
(31). Since Eq. (7) is designed robust stable then,
for a bounded reference r, u, is proved to be
bounded for all k; thus from Eq. (2) y, is
bounded, furthermore e, are shown bounded for
all k, and the overall stability of the closed- loop
time-varying system is assured in the sense of ex-
pectation with respect to 5,.. Especially for a con-
stant reference r;,, when s, approaches to zero in
the sense of expectation with respect to 7, as Ik
approaches to infinity, from Eq. (32) the control
signalu,. approaches to a constant, i.e. u;. = u;._;.
This implies that, Q(z_l)uk =0. Then, from Eq.
(2), the output signal y,  approaches to ry; fur-
thermore the error signal e, approaches to zero,
and the output signal y,. convergence to the con-
stant reference signalr; is assured in the sense of
expectation with respect to 7.8

Remarks: The usage of a parameter p in the
difference of the Lyapunov function Eq. (18) is
similar to the introduction of a forgetting factor in
the least-squares error function [9], which im-
plies that a time-varying weighting of the data is
introduced. The most recent data is given unit
weight, but data that is ¢ time units old is
weighted by u'.

We do not prove, or claim, that ék converges
to its true values 6. Instead, each element of
ék - ék,l approaches to constant values in the
sense of expectation with respect to 7.

In general, real systems are also subject to
noise, and it is of interest to ensure the overall
closed-loop stability in presence of system and
measurement noises. The proposed algorithm is
extended to the case where system and measure-
ment noises are considered. The white noise signal
& is defined as a bounded independent random se-
quence, which has the following properties:

Eg{gi} =0
Eg{gjgi} = (51]‘0'

Ofori # j

2 with 6}] z{lforizj;

where &, is a zero mean uncorrelated random sig-
nal with standard deviation o and E; is the expec-
tation with respect to noise §.

The nominal system model and the family
of system models to be considered in this section
are represented as:

A%z Yy, =z Bz Dy + &, (33)
Az Yy, =z Bz Yu, + &, (34)

respectively, where &, represents the system and
measurement noise (white noise) signal. This
model is so-called AR (Auto Regressive) model.

Using the definition of s, 4 given in Eq. (2),
and including equations (4) and (33), s, 4 is re-
written as

Siea = Gz e + F(z Ny —Cz riyeq +

E(z Dar (35)

If the control law in Eq. (11) is used for the
exactly known system, then:

Sk = E(z e jsa- (36)

The degree of polynomial E(z™Y) is d -1,
which implies that s, ; depends only on future
states of . Therefore, u,. gives the minimum vari-
ance control for s;., 4.

Theorem 2

Recursive estimates of controller parame-
ters based on generalized minimum variance cri-
terion for auto regressive system models with a
forgetting factor: Given a positive definite matrix
I'y, a parameter u (0 < u < 1) and the initial para-
meters vector éo, the estimate 6 i of the controller

in Eq. (11) satisfies the recursive equations (13)
and (14) for a white zero mean noise under
Assumptions 1 and 2; thus the overall clo-
sed-loop time-varying system combining equa-
tions (11), (13), (14) and equation (34) gives the
overall stability in the sense of the expectation
with respect to system and measurement noise
&, and with respect to 7.

Rev. Téc. Ing. Univ. Zulia. Vol. 34, No. 2, 2011



154

Patete y Furuta

Proof: The proof follows as the given proof
in Theorem 1, using equations (33)-(36), com-
bined with the proof given in Patete [11]-Theorem
2 for auto regressive time-invariant systems.®

4. Simulation results

In the following, the proposed algorithm in
Eq. (13) and Eq. (14) is denoted by STC-TVS-
GMVC. The initial conditionI; = I (where Iis the
identity matrix) and the parameter u = 08 (for-
getting factor) are chosen. The reference signal is
set to the unit step.

As an academic example, consider the
following non-minimum phase system model
with d = 2:

1+ alz_l)yk = z_d[b0 + blz_l)uk, (37)

where the parameter intervals are given as a; €
[-05,-01], by € [08.12], b, € [14,26] Fory =1

ai+gi,ai0 =ai _Qi’blo — bl+l21’
2 2y 2

thus, the nominal system model is represented
by:

1-03z" Yy, =z %1+ 2z Nu,, (38)

and a, =02, B, =02, B, =086.

For the nominal controller design using the
GMVC presented in section 2, the following poly-
nomials are chosen:

Cz™Y) =1+ 271+ 025272, (39)
Q(z™) =401+ z ™), (40)

which lead to the following polynomials for the
controller law: I:‘(z_l) =064 and é{z_l) =41-
367z '+ 26272, these are used as initial esti-
mates of the controller parameters.

In the first, for the simulation example, the
real system model is assumed to be represented
by:

Im T“(e—jw)

Re

Figure 1. Robust stability analysis for system
(37): T(e™ ), o(y,0)andy =1

(1-05z" Yy, =z %1+ 23z u,. (41)

The robust stability analysis of the
closed-loop system in presence of parametric in-
terval uncertainties is shown in Figure 1. As
shown, f(e’j‘“) does not intersect with the critical
circle o(1,0), which implies that the sufficient con-
dition for robust stability is satisfied. Figure 2
shows the output responses when, after 100
samples, the system model in Eq. (41) abruptly
changes to the following system model:

(1-01z Yy, =z 412+ 262z Mu,. (42)

5. Conclusions

The overall stability of a self-tuning control
algorithm, based on recursive controller parame-
ter estimation including a forgetting factor and
generalized minimum variance criterion, for a
class of time-varying systems, has been proved
based on the discrete-time sliding mode control
theory. The results have been extended to the
case where system and measurement noises are
considered into the system model. The validity of
the proposed algorithm was also demonstrated
through simulation results. The principal contri-
bution of the obtained stability results is to as-
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Figure 2. y,. vs. r.: GMVC (dashed-line) and STC-TVS-GMVC (solid-line) algorithms applied to system
in Eq. (37), when after 100 samples the system changes from Eq. (41) to Eq. (42),T = and 4 =038.

sure the overall stability if the presented control
algorithm is implemented on a real system with
time-varying parameters, even in the presence of
system and measurement noises.
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