Desempeño de catalizadores de CuO/ZnO/Al2O3 sometidos a varios ciclos de reacción de desplazamiento del gas de agua / Catalytic performance of CuO/ZnO/Al2O3 catalysts under water-gas shift reaction cycles.
Resumen
Resumen
Se estudió un catalizador industrial de CuO/ZnO/Al2O3 fresco y usado, empleado en la reacción de desplazamiento del gas de agua (WGSR). Las muestras fueron caracterizadas mediante Fluorescencia de rayos X, Difracción de rayos X, Reducción a Temperatura Programada y quimisorción de CO. El desempeño catalítico del catalizador fresco fue evaluado bajo 3 ciclos consecutivos de la reacción a baja temperatura (200-250 °C). Los catalizadores usados presentaron una disminución del área superficial, así como una modificación de la estructura cristalina, pérdida de superficie metálica del cobre y presencia de azufre. La reacción de WGSR se favoreció a 250 °C, registrando altas conversiones de CO (≈90%) para la muestra fresca durante 3 ciclos sucesivos de reacción. Los catalizadores usados aún mantienen una alta actividad (≈80%), con excepción de la muestra más cercana al tope del reactor, la cual podría estar más afectada como consecuencia de un alto contenido de azufre y/o la condensación de agua durante el enfriamiento.
Abstract
Fresh and spent CuO/ZnO/Al2O3 industrial catalyst used in a water-gas shift reaction (WGSR) was studied. The samples were characterized by X-ray fluorescence, X-ray diffraction, Temperature programmed reduction and CO chemisorption. The catalytic performance was evaluated under consecutive cycles of WGSR at low temperature (200-250 °C). The spent catalysts exhibited a decrease in surface area, as well as a modification of the crystalline structure, loss of Cu metallic surface and presence of sulfur. WGSR was favored at 250 °C, registering high CO conversions (≈90%) for the fresh sample during successive reaction cycles. The spent catalysts kept a high activity (≈80%), except for the catalyst portion collected at the reactor’s top, which could be more affected because of high sulfur content and/or water condensation during the reactor’s cooling.
https://doi.org/10.22209/rt.v43n3a06
Descargas
Citas
Chianese S., Loipersbock J., Malits M., Rauch R., Hofbauer H., Molino A. and Musmurra D.: “Hydrogen from the high temperature water gas shift reaction with an industrial Fe/Cr catalyst using biomass gasification tar rich synthesis gas”. Fuel Process. Technol., Vol. 132, (2015) 39-48.
Newsome D.: “The water-gas shift reaction”. Catal. Rev. Sci. Eng., Vol. 21, N° 2 (1980) 275-318.
Rangel J., Marchetti G. and Rangel M.C.: “A thorium-doped catalyst for the high temperature shift reaction”. Catal. Today, Vol. 77, N° 3
(2002) 205-213.
Ilinich O., Ruettinger W., Liu X. and Farrauto R.: “Cu-Al2O3-Cu-Al2O4 water-gas shift catalyst for hydrogen production in fuel cell applications: Mechanism of deactivation under start-stop operating conditions”. J. Catal., Vol. 247, N° 1 (2007) 112-118.
Guo P., Chen L., Yu G., Zhu Y., Qiao M., Xu H. and Fan K.: “Cu/ZnO-based water-gas shift catalysts in shut-down/start-up operation”. Catal. Commun., Vol. 10, N° 8 (2009) 1252-1256.
Shishido T., Nishimura S., Yoshinaga Y., Ebitani K., Teramura K. and Tanaka T.: “High sustainability of Cu-Al-Ox catalysts against daily start-up and shut-down (DSS)-like operation in the water-gas shift reaction”. Catal. Commun., Vol. 10, N° 7 (2009) 1057-1061.
Micromeritics Instrument Corporation. (2009). Automated catalyst characterization system. Operator’s Manual AutoChem II 2920 V4.00.
Zeradine S., Bourane A. and Bianchi D.: “Comparison of the coverage of the linear CO species on Cu/Al2O3 measured under adsorption equilibrium conditions by using FTIR and mass spectroscopy”. J. Phys. Chem. B, Vol. 105, N° 30 (2001) 7254-7257.
Kowalik P., Konkol M., Antoniak K., Prochniak W. and Wiercioch P.: “The effect of the precursor ageing on properties of the Cu/ZnO/Al2O3 catalyst for low temperature water-gas shift”. J. Mol. Catal. A: Chem., Vol. 392 (2014) 127-133.
Forzatti P. and Lietti L.: “Catalyst Deactivation” Catal. Today, Vol. 52, N° 2-3 (1999) 165-181.
Boomer E., Morris H and Argue G.: “Apparent formation of copper carbonyl”. Nature, Vol. 129 (1932) 438.
Brenna G.: “New catalyst for the H2 production by water-gas shift reaction processes”, Tesis doctoral, Facultad de Química Industrial de la Universidad de Bologna, 2010.
Leofanti G., Padovan M., Tozzola G. and Venturelli B.: “Surface area and pore texture of catalysts”. Catal. Today, Vol. 41, N° 1-3 (1998) 207-219.
Kam R., Selomulya C., Amal R. and Scott J.: “The influence of La-doping on the activity and stability of Cu/ZnO catalyst for the low-temperature water–gas shift reaction”. J. Catal., Vol. 273, N° 1 (2010)
-81.
Deraz N.: “Surface and catalytic properties of Cu/Zn mixed oxide catalysts”. Colloid Surface A, Vol. 190, N° 3 (2001) 251-260.
Nishida K., Atake L., Li D., Shishido T., Oumi Y., Sano T. and Takehira K.: “Effect of noble metal-dopping on Cu/ZnO/Al2O3 catalysts for water-gas shift reaction: Catalyst preparation by adopting “memory effect” of hydrotalcite”. Appl. Catal. A: Gen., Vol. 337, N° 1 (2008) 48-57.
Chen W. and Jheng J.: “Characterization of water gas shift reaction in association with carbon dioxide sequestration”. J. Power Sources, Vol. 172, N° 1 (2007) 368-375.
Liu X., Guo P., Xie S., Pei Y., Qiao M. and Fan K.: “Effect of Cu loading on Cu/ZnO water gas shift catalysts for shut-down/start-up operation”. Int. J. Hydrogen Energ., Vol. 37, N° 8 (2012) 6381-6388.
Melián-Cabrera I., López Granados M. and Fierro J.: “Reverse topotactic transformation of a Cu-Zn-Al catalyst during wet Pd impregnation: Relevance for the performance in methanol synthesis from CO2/H2 mixtures”. J. Catal., Vol. 210, N° 2 (2002) 273-284.
Nishimura S., Shishido T., Ebitani K., Teramura K. and Tanaka T.: “Novel catalytic behavior of Cu/Al2O3 catalyst against daily start-up and shut-down (DSS)- like operation in the water gas shift reaction”. Appl. Catal. A: Gen., Vol. 387, N° 1-2 (2010) 185-194.
Moulijn J., van Diepen A. and Kapteijn F.: “Catalyst deactivation: is it predictable? What to do?”. Appl. Catal. A: Gen. Vol 212, N° 1-2 (2001) 3-16.
Kung H.: “Deactivation of methanol synthesis catalysts - A review”. Catal. Today, Vol. 11, N° 4 (1992) 443-453.
Arrebola C., Caballero A., Hernán L. and Morales J.: “Graphitized carbons of variable morphology and crystallinity: A comparative study of their performance in lithium cells”. J. Electrochem Soc., Vol. 156, N° 12 (2009) A986-A992.
Agarwal V., Patel S. and Pant K.: “H2 production by steam reforming of methanol over Cu/ZnO/Al2O3 catalysts: Transient deactivation kinetics modeling”. Appl. Catal. A: Gen., Vol. 279, N° 1-2 (2005) 155-164.
Figueiredo R., Dantas A., Carvalho de Andrade H. and Fierro J.: “Effect of low steam/carbon ratio on water-gas shift reaction”. Catal. Today, Vol. 107-108, (2005) 671-675.
Marécot P., Akhachane A., Micheaud C., and Barbier J.: “Deactivation by coking of supported palladium catalysts. Effect of time and temperature”. Appl. Catal. A: Gen., Vol. 169, N° 1 (1998) 189-196.
Fierro G., Lo Jacono M., Inversi M., Porta P., Ciocii F. and Lavecchia R.: “Study of the reducibility of copper in CuO-ZnO catalysts by temperature-programmed reduction”. Appl. Catal. A: Gen., Vol. 137, N° 2 (1996) 327-348.
Turco M., Bagnasco G., Costantino U., Marmottini F., Montanari T., Ramis G. and Busca G.: “Production of hydrogen from oxidative steam reforming of methanol I. Preparation and characterization of Cu/ZnO/Al2O3 catalysts from a hydrotalcite-like LDH precursor”. J. Catal., Vol. 228, N° 1 (2004) 43-55.
Millar G., Holm I., Uwins P. and Drennan J.: “Characterization of precursors to methanol synthesis catalysts Cu/ZnO system”. J. Chem. Soc. Faraday Trans., Vol. 94, N° 4 (1998) 593-600.
Semprún L., Solano R., Sánchez J., Carruyo G., Ramos M., Enao J., Atencio R., Bandosz T., Seredych M. and Moronta A.: “Remoción de H2S utilizando una arcilla natural modificada con un surfactante e incorporando Cu, Fe y Zn en la estructura”. Rev. Téc. Ing. Univ. Zulia, Vol. 34, N° 1 (2011) 66-76.
Ayastuy J., Gutiérrez-Ortiz M., González-Marcos J., Aranzabal A and González-Velasco J.: “Kinetics of the low-temperature WGS reaction over a CuO/ZnO/Al2O3 catalyst”. Ind. Eng. Chem. Res. Vol. 44, N° 1 (2005) 41-50.
Ginés M., Amadeo N., Laborde M. and Apesteguía C.: “Activity and structure-sensitivity of the water-gas shift reaction over Cu-Zn-Al mixed oxide catalysts”. Appl. Catal. A: Gen., Vol. 131, N° 2 (1995) 283-296.
Copyright
La Revista Técnica de la Facultad de Ingeniería declara que los derechos de autor de los trabajos originales publicados, corresponden y son propiedad intelectual de sus autores. Los autores preservan sus derechos de autoría y publicación sin restricciones, según la licencia pública internacional no comercial ShareAlike 4.0