DInSAR for Geomechanical Reservoir Analysis – Application to Reservoir Lagunillas Lower 07, Lake Maracaibo, Venezuela
Abstract
This study addresses the issue of subsidence in the Lagunillas Inferior 07 (LGINF-07) field in the Lake Maracaibo Basin, Venezuela, a major concern for the oil industry due to ground movements recorded since 1926 that have impacted oil platforms. The objective was to apply the Differential Interferometric Synthetic Aperture Radar (DInSAR) technique to monitor subsidence and provide accurate data without the need for physical presence in the field. TerraSAR-X satellite images, obtained between 2011 and 2015, were processed using differential interferometry to detect ground deformations. The results showed an average subsidence rate of -0.035 meters per year, allowing for the update of geomechanical models and improving the understanding of soil movements in the region, contributing to the planning and safety of oil operations. This analysis, compared with historical data, revealed the effectiveness of DInSAR in predicting future ground movements and optimizing infrastructure management in critical areas of the oil industry. In conclusion, the DInSAR technique is a valuable tool for geomechanical monitoring, improving the safety and efficiency of strategic operations.
Downloads
References
Alhogbani, E., Gaber, S., Hagag, A. (2022). Surface deformation reveals dynamic reservoir behaviors. Oil & Gas Journal, 120(8), 35-40.
Angarita, M., Graves, E., Grapenthin R., Grigg, J., Rinehart, A. (2023). InSAR-observed surface deformation in New Mexico’s Permian Basin shows threats and opportunities presented by leaky injection Wells. Scientist report of Nature, 17308.
Barrios, J. González, D. Zambrano, O. (2016). Comparación del modelo geomecánico del yacimiento Lagunillas Inferior 07 con el modelo petrofísico para explicar el fenómeno de subsidencia Tesis de Grado. Universidad del Zulia. Facultad de Ingeniería. División de Postgrado. Maracaibo, Venezuela, 112-127.
Barrios, J., Sanchez, E. (2013). Manual de Geomecánica aplicada a la Industria Petrolera. PDVSA-Intevep, Venezuela. Sección 3, 1-34.
Berardino, P., Fornaro, G., Lanari, R., Sansosti, E. (2002). A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40, 2375-2383.
Bevc, D., Mali, G., Milliken, W., Nihei, K., Shabelansky, A., Zhang, Z. (2022). Geomechanical Interferometry: Theory and Application to Time-Lapse Interferometric Synthetic Aperture Radar Data for Separating Displacement Signal Between Overburden and Reservoir Sources. Journal of SPE-OnePetro. SPE J. 27 (06): 3773–3782.
Briceño, L. (2009). Modelo estructural y estratigráfico basado en la interpretación sísmica 3D del yacimiento Lagunillas inferior LL07. Tesis de Grado. Universidad del Zulia. Facultad de Ingeniería. División de Postgrado. Maracaibo, Venezuela, 31-60.
Casu, F., Manzo, M., Lanari, R. (2006). A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sensing of Environment, 102(1-2), pp.195-210.
Chrzanowski, A. and Chen, Y. Q. (1991). Use of the Global Positioning System (GPS) for Ground Subsidence Measurements in Western Venezuela Oil Fields, Proceedings of the Fourth International Symposium on Land Subsidence, No. 200, 419- 431.
Donati, D., Falorni, G., Jones, G., Muhammad, M., Stead, D. (2022). Applications of Image-Based Computer Vision for Remote Surveillance of Slope Instability. Journal of Frontiers in Earth Sciences. 10.3389/feart.2022.909078.
Ferretti, A.; Prati, C., Rocca, F. (2001). “Permanent Scatterers in SAR Interferometry”, IEEE Transactions on Geoscience and Remote Sensing, 39, 8-20.
Fjær, E., Holt, R.M., Horsrud, P., Raaen, A.M. (2008). Petroleum Related Rock Mechanics, 2nd Edition. Elsevier. Amsterdam, The Netherlands, 391-426.
Gabriel, A.K., Goldstein, R.M., Zebker, H.A. (1989). Mapping small elevation changes over large areas: differential radar interferometry. Journal of Geophysical Research: Solid Earth, 94(B7), 9183-9191.
Geertsma, J. (1973). Land Subsidence above compacting oil and gas reservoirs. Journal of Petroleum Technology. No. 03730, 734-744.
Goldstein, R.M., Zebker, H.A., Werner, C.L. (1988). Satellite radar interferometry: two-dimensional phase unwrapping. Radio Science, 23(4), 713-720.
Lanari, R., Casu, F., Manzo, M., Zeni, G., Berardino, P., Manunta, M., Pepe, A. (2007). An overview of the Small Baseline Subset Algorithm: A DInSAR Technique for Surface Deformation Analysis. Deformation and Gravity Change: Indicators of Isostasy, Tectonics, Volcanism, and Climate Change, 637-661.
Leal, J. (1989). Integration of GPS and Leveling for Subsidence Monitoring Studies at Costa Bolivar Oil Fields, Venezuela. Technical Report No. 144, Canada: University of New Brunswick, 18-89.
Liu, G., Tong, J., Wang, X., Xiang, W., Yuan H., Zhang, C., Zhang, R., Zhang, X., Zhang, Y. (2023). Geodetic imaging of ground deformation and reservoir parameters at the Yangbajing Geothermal Field, Tibet, China. Geophysical Journal International, 279-394.
Lundgren, P., Usai, S.; Sansosti, R., Lanari, R., Tesauro, M., Fornaro, G., Berardino, P. (2001). “Modeling surface deformation observed with SAR Interferometry at Campei Flegrei Caldera”. J. Geophysical. Res., 106, 19355-19367.
Ju, X., Yang, J., Yang, Y., Xu, L. (2023) “Influence of geological factors on surface deformation due to hydrocarbon exploitation using time-series InSAR: A case study of Karamay Oilfield, China”, Journal of Frontiers in Earth Sciences. 10.3389/feart.2022.983155.
Murria, J. (1991). Subsidence Due to Oil Production in Western Venezuela: Engineering Problems and Solutions. Proceedings of the Fourth International Symposium on Land Subsidence, No. 200, 129-139.
Murria, J. (2007). Ground Subsidence Measuring, Monitoring and Modeling in the Costa Oriental Oilfields in Western Venezuela: The Last Fifty Years, 8th International Conference “Waste Management, Environment Geotechnology and Global Sustainable Development. (ICWMEGGSD’07-GzO’07)”, 337-372.
Pepe, A., Callo, F., (2017). A review of interferometric synthetic aperture RADAR (InSAR) multi-track approaches for the retrieval of Earth's surface displacements. Appl. Sci. 7 (12), 1264.
Quintana, G. (2021). La interferometría SAR (Synthetic Aperture Radar) para el estudio de las deformaciones de la corteza, derivadas de la geodinámica. Ejemplos de aplicación: Kumamoto (Japón), Valencia y Costa Oriental del Lago de Maracaibo (Venezuela). Trabajo Final de Grado de Magister Scientiarum mención Ciencias Geológicas. Postgrado en Ciencias Geológicas, Universidad Central de Venezuela, 24-36.
Raspini, F. Caleca, F, Festa, D. Confuorto, P., Bianchini, F. (2022). Review of satellite radar interferometry for subsidence análisis. Earth Science Reviews. 10.1016/j.earscirev.2022.104239.
SARscape®. User Guide. Purasca, Switzerland: Sarmap; 2014. SBAS_Tutorial, p. 4-54.
Usai, S. (2001). A new approach for long term monitoring of deformation by differential SAR interferometry. Tesis Doctoral. Paises Bajos: Delft University.
Walford, J. (1995). GPS Subsidence Study of The Costa Bolivar Oil Fields, Venezuela. Technical Report No. 174, Canada: University of New Brunswick, 1-11.
Zoback, M.D. (2010). Reservoirs Geomechanics. Cambridge University Press, 167-196.

Copyright (c) 2024 Dario Antonio González Freites, Orlando Zambrano Mendoza, Jorge Luis Barrios

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright
La Revista Técnica de la Facultad de Ingeniería declara que los derechos de autor de los trabajos originales publicados, corresponden y son propiedad intelectual de sus autores. Los autores preservan sus derechos de autoría y publicación sin restricciones, según la licencia pública internacional no comercial ShareAlike 4.0