Producción de biodiesel por esterificación y transesterificación de aceites vegetales de cocina usados / Production of biodiesel by esterification and transesterification from waste cooking oils / Produção de biodiesel por esterificação e transesterificação de óleos vegetais de cozinha usado
Abstract
Resumen
Anualmente se generan grandes cantidades de aceites vegetales usados (AVU), producto de la preparación de alimentos, los cuales pueden causar contaminación de aguas y suelos, si no son dispuestos adecuadamente, pero a su vez tienen gran potencial en la producción de biodiesel. En este trabajo, los AVU recolectados de establecimientos de comida rápida se sometieron a un pretratamiento de esterificación, variando las condiciones de reacción, relación molar, concentración de catalizador y tiempo, con la finalidad de disminuir el contenido de ácidos grasos libres generados en los procesos de fritura, antes de la transesterificación. Se encontró que la acidez inicial de los AVU (10,08 ± 0,22 %) disminuyó por debajo de 1 % durante la esterificación a 60 °C y 100 rpm, con RMAVU:MeOH de 1:7 y concentración de HCl de 0,3 % v/v, con una conversión de ácidos grasos libres (AGL) a ésteres metílicos del 94,48 y 98,61 % para tiempos de reacción de cuatro (4) y seis (6) horas, respectivamente. Los AVU previamente esterificados se sometieron a un proceso de transesterificación con KOH como catalizador en presencia de metanol, a 60 °C y 100 rpm, encontrando que el biodiesel producido es una mezcla compuesta por los ésteres metílicos de los ácidos linoleico (57 %), palmítico (14 %), oleico (22 %), esteárico (4 %) y elaídico (3 %). La mayor concentración de ésteres metílicos (93,797 ± 0,685 g.L-1) se obtuvo al usar los AVU esterificados durante seis (6) h de reacción. Los espectros FTIR confirmaron la conversión de los ácidos grasos a ésteres metílicos, por lo que este biocombustible podría ser utilizado en motores diésel.
Abstract
Large quantities of used vegetable oils (AVUs) are generated annually, as a result of food preparation, which can cause contamination of waters and soils, if they are not disposed of properly, but in turn have great potential in the production of biodiesel. In this work, the AVU collected from fast food establishments were subjected to an esterification pretreatment, varying the reaction conditions, molar ratio, catalyst concentration and time, to decrease the content of free fatty acids generated in the frying processes; after an alkaline transesterification. The initial acidity of the AVUs (10,08 ± 0,22 %) was found to drop below 1 % during esterification at 60 °C and 100 rpm, with RMAVU:MeOH of 1: 7 and HCl concentration of 0.3 % v/v, with a conversion of free fatty acids (FFA) to methyl esters of 94.48 and 98.61 % for reaction times of 4 and 6 hours, respectively. The previously esterified AVUs were subjected to a transesterification process with KOH as a catalyst in the presence of methanol, at 60 °C and 100 rpm, finding that the biodiesel produced was a mixture composed of the methyl esters of linoleic acids (57 %), palmitic (14 %), oleic (22 %), stearic (4 %) and elaidic (3 %). The highest concentration of methyl esters (93,797 ± 0.685 g.L-1) was obtained when using the esterified AVU during 6 hours of reaction. FTIR spectra confirmed the conversion of fatty acids to methyl esters, so this product could be used as a biofuel.
Resumo
Grandes quantidades de óleos vegetais usados (AVUs) são geradas anualmente, como resultado da preparação de alimentos, que podem causar contaminação das águas e do solo, se não forem descartados adequadamente, mas, por sua vez, têm grande potencial na produção de biodiesel. Neste trabalho, as AVU coletadas em estabelecimentos de fast food foram submetidas a um pré-tratamento de esterificação, variando as condições de reação, razão molar, concentração do catalisador e tempo, para diminuir o teor de ácidos graxos livres gerados nos processos de fritura; após uma transesterificação alcalina. A acidez inicial das AVUs (10,08 ± 0,22 %) caiu abaixo de 1 % durante a esterificação a 60 ° C e 100 rpm, com RMAVU: MeOH de 1: 7 e concentração de HCl de 0,3 % v/v, com uma conversão de ácidos graxos livres (AGL) em ésteres metílicos de 94,48 e 98,61 % para tempos de reação de 4 e 6 horas, respectivamente. As AVUs previamente esterificadas foram submetidas a um processo de transesterificação com KOH como catalisador na presença de metanol, a 60 ° C e 100 rpm, constatando que o biodiesel produzido era uma mistura composta pelos ésteres metílicos de ácidos linoléicos (57 %), palmítico (14 %), oleico (22 %), esteárico (4 %) e elaídico (3 %). A maior concentração de ésteres metílicos (93.797 ± 0,685 g.L-1) foi obtida com o uso da UVA esterificada durante 6 horas de reação. Os espectros de FTIR confirmaram a conversão de ácidos graxos em ésteres metílicos, para que este produto pudesse ser usado como biocombustível.Downloads
References
ASTM D1298-12b. 2012. Standard Test Method for Density, Relative Density, or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method, ASTM International, West Conshohocken, PA, Disponible en: http://www.astm.org/.
ASTM D445. 2015. Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and the Calculation of Dynamic Viscosity) ASTM International, West Conshohocken, PA. Disponible en: http://www.astm.org/.
ASTM D482-13. 2013. Standard Test Method for Ash from Petroleum Products, ASTM International, West Conshohocken, PA. Disponible en: http://www.astm.org/.
Atabani, A., A. Silitonga, I. Badruddin, T. Mahlia, H. Masjuki, and S. Mekhilef. 2012. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and sustainable energy reviews. 16(4): 2070-2093.
Bautista L., G. Vicente, R. Rodríguez and M. Pacheco. 2009. Optimization of FAME production from waste cooking oil. Biomass and Bioenergy. 33: 862 – 872.
Bonacia, V. y J. Maldonado. 2012. Producción de biodiesel mediante esterificación/transesterificación de aceites vegetales usados. Trabajo de grado. Universidad Rafael Urdaneta. Zulia. Venezuela.
Chai, M.; Q. Tu; J. Yang; and M. Lu. 2014. Esterification pretreatment of free fatty acid in biodiesel production, from laboratory to industry. Fuel Processing Technology. 125: 106-113.
Chhetri, A., K. Watts, and M. Islam. 2008. Waste cooking oil as an alternate feedstock for biodiesel production. Energies. 1(1): 3-18.
COVENIN 325-01. 2001. Aceites y grasas vegetales. Determinación de la acidez. Comisión Venezolana de Normas Industriales, Caracas. 3era revisión.
Cvengros, J. and Z. Cvengrosova. 2004. Used frying oils and fat and their utilization in the production of methyl esters of higher fatty acids. Biomass & Bioenergy. 27: 173-181.
Demirbas, A. 2009. Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Conversion and Management. 50(4), 923-927.
Diya’uddeen, B., A. Abdul, and W. Daud. 2012. Performance evaluation of biodiesel from used domestic waste oils. A review. Process Safety and Environmental Protection. 90: 164-179.
Duti, I., M. Maliha and S. Ahmed. 2016. Biodiesel Production from Waste Frying Oil and Its Process Simulation. Journal of Modern Science and Technology. 4(1).
Encinar, J., N. Sánchez and G. Martínez. 2011. Study of biodiesel production from animal fats with high free fatty acid content. Bioresource Technology. 102: 10907-10914.
Felizardo, P., J. Neiva and I. Raposo. 2006. Production of biodiesel from waste frying oils. Waste Management. 26: 487-494.
Guerrero, C., A. Guerrero, F. Sierra. 2011. Biodiesel production from waste cooking oil. In: Biodiesel –Feedstocks and Processing technologies. Dr. Margarita Stoytcheva (Ed.) ISBN 978-953-307-713-0, In Tech. Chapter 2: 23-44.
Issariyakul, T., M. Kulkarni and A. Dalai. 2007. Production of biodiesel from waste fryer grease using mixed methanol/ethanol system. Fuel processing Technology. 88: 429-436.
Kalam, M., H. Masjuki, M. Jayed and A. Liaquat. 2011. Emissions and performance characteristics of an indirect ignition diesel engine fuelled with waste cooking oil. Energy. 36: 397-42.
Mathiyazhagan, M., and A. Ganapathi. 2011. Factors affecting biodiesel production. Research in plant Biology. 1(2): 1-5
Meher, L., V. Vidya and S. Naik. 2006. Technical aspects of biodiesel production by transesterification a review. Renewable and Sustainable Energy Reviews. 10: 248-268.
Montero, G., B. Jaramillo, A. Vázquez, M. Coronado, C. García y L. Toscano. 2016. Experiencias de aprovechamiento de residuos para la generación de biodiesel en Colombia y México. Revista Internacional de Contaminación Ambiental (Especial Residuos Sólidos) 12: 77-90.
Mustafa, T., S. Soomro, M. Najam, M. Amin and I. Ahmad. 2016. Production of Biodiesel through Catalytic Transesterification of Jatropha Oil. Journal of Applied and Emerging Sciences. 6(1): 9-13.
Nisar, J., R. Razaq, M. Farooq, M. Iqbal, R. Khan, M. Sayed, A. Shahd and I. Rahman. 2017. Enhanced biodiesel production from Jatropha oil using calcined waste animal bones as catalyst. Renewable Energy. 101: 111-119.
Papageorgiou, A., J. Barton, and A. Karagiannidis. 2009. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England. Journal Environment. Manager. 90: 2999–3012.
Patil, P., V. Gude, H. Reddy, T. Muppaneni and S. Deng. 2012. Biodiesel production from waste cooking oil using sulfuric acid and microwave irradiation processes. Journal of Environmental Protection. 3(01): 107.
Restrepo, J. 2012. El desarrollo sostenible y el reciclaje del aceite usado de cocina a la luz de la jurisprudencia y el ordenamiento jurídico colombiano. Producción Más Limpia. 7(1): 109-122.
Shalaby, E. and N. El-Gendy. 2012. Two steps alkaline transesterification of waste cooking oil and quality assessment of produced biodiesel. Int. J. Chem. Biochem. Sci. 1(3): 30-35.
Silverstein, R., F. Webster, D. Kiemle and D. Bryce. 2014. Spectrometric identification of organic compounds. John Wiley & Sons.
Sinha, Sh., A. Agarwal, and S. Garg. 2008. Biodiesel development from rice bran oil: Transesterification process optimization and fuel characterization. Energy Conversion & Management. 49: 1248 – 1257.
Solomons, T. W. 1985. Química orgánica. Primera Edición. Editorial Limusa, S. A de C. V. México. 1123p.
Tariq, M., S. Ali, F. Ahmad, M. Ahmad, M. Zafar, N. Khalid and M. Khan. 2011. Identification, FT-IR, NMR (1 H and 13 C) and GC/MS studies of fatty acid methyl esters in biodiesel from rocket seed oil. Fuel Processing Technology. 92(3): 336-341.
Urribarrí, A., A. Zabala, J. Sánchez, E. Arenas, C. Chandler, M. Rincón y C. Aiello Mazzarri. 2014. Evaluación del potencial de la borra de café como materia prima para la producción de biodiesel. Multiciencias. 14(2): 129-139
Uzun, B., M. Kilic and N. Ozbay. 2012. Biodiesel production from waste frying oils: Optimization of reactions parameters and determination of fuel properties. Energy. XXX: 1-5.
Wade, L. G. 1993. Química orgánica. Segunda Edición. Prentice Hall Hispanoamericana, S. A. México. 1312p.
Wang Y., S. Ou and P. Liu. 2006. Comparison of two processes to synthesize biodiesel by waste cooking oil. Journal of Molecular Catalysis. A: Chemical, 252: 107-112.