Available phosphorus in soil from three sources and their effect on biomass and corn root development
Abstract
Phosphorus deficiency in the country is very common, to overcome the problem high soluble phosphates are applied, the use a less soluble acidulated phosphate rock with sulfuric acid (RFA) is one economical alternative. The partial substitution of sulfuric acid by ammonium thiosulfate in the acidulation process (R30T) has proven feasible. The objective of this study was to prove the effect of these P sources on the maize behavior. Two soils were used a neutral and acidic one. Four doses of P treatments were used: 0, 70, 140 and 210 mg.kg-1, in a glasshouse experiment. 35 days after planting plants were harvest and soil and root samples were taken for phosphorus analysis and determination of dry matter, root length (LR) and root volume (VR). Partial substitution of sulfuric acid by ammonium thiosulfate does not affect the quality of the acidulated rock. A close relationship between biomass and P concentration in the corn tops with residual soil P, LR and VR increased with the first increase of soil P, successive increments of P produced a decrease in roots size. The LR and VR relationship with P uptake and biomass was not the same in the two soils, in the acidic soil there was a higher dependence on P uptake than in the neutral soil.
Downloads
References
Bohm, H. (1979). Methods of studing root system. Springer-Verlag, Berlin. 188 p. http://dx.doi.org/10.1007/978-3-642-67282-8
Correa, R.M., Araulo, C. W., de Sá Sauza, S. K., Freire, F. and Silva, G. (2005). Gafsa rock phosphate and triple superphosphate for dry matter production and P uptake by corn. Science Agriculture. 62:159-164. https://doi.org/10.1590/S0103-90162005000200011
Fernández, S. and Ramírez, R. (2000). Efecto de la fuente de fósforo sobre la morfología radical y la acumulación de nutrientes en siete líneas de maíz. Bioagro,12:41-46. http://www.ucla.edu.ve/bioagro/Rev12(2)/2.%20Efecto%20de%20la%20fuente%20de%20fosforo.pdf
Foehse, D. and Jungk, A. (1983). Influence of phosphate and nitrate supply of root hair formation of rape, spinach, and tomato plants. Plant and Soil, 74:354-368. https://doi.org/10.1007/BF00010407
Foehse, D., Classen N. and Junk, A. (1991). Phosphorus eficiency of plants. II. Significance of root hairs and cation-anionbalance for phosphorus influxin seven plant species. Plant and Soil, 132: 261-272. https://doi.org/10.1007/BF00010407
Gahoonia, T. and Nielsen, N. (1996). Variation in acquisition of soil phosphorus among wheat and barley genotypes. Plant and Soil, 178: 223-230. https://doi.org/10.1007/BF00011587
Gahoonia, T. and Nielsen, N. (1998). Direct evidence on participation of root hairs in phosphorus (32P) uptake from soil. Plant and Soil, 198: 147-152. https://doi.org/10.1023/A:1004346412006
Gahoonia, T., Care, D. and Nielsen, N. (1997). Root hairs and phophorus acquisition of wheat and barley cultivars. Plant and Soil, 191: 181-188. https://doi.org/10.1023/A:1004270201418
Hanafi, M. and Leslee, C. H. (1996). Disolution of phosphate rock in the rhizosphere of upland rice soils. Communications Soil Science Plant Analisis., 27: 1459-1477. DOI: 10.1080/00103629609369646
Kranmitz, P., Arssen, L. and Lefebvre, D. (1991). Correction of non linear relationship between root size and short term P uptake in genotype comparation. Plant and Soil, 133: 157-167. http://www.jstor.org/stable/42937022
Li Feng; Pan XiaoHua; Liu ShuiYing; Li MuYing; Yang FuSun. (2004). Effect of
phosphorus deficiency stress on root morphology and nutrient absorption of rice cultivars. Acta Agronomica Sinica, 30:438-442. http://europepmc.org/abstract/CBA/592213
Li, H. B., Xia, M. and Wu, P. (2001). Effect of phosphorus deficiency stress on
rice lateral root growth and nutrient absorption. Acta Botanica Sinica. 43: 1154-1160 https://www.jipb.net/CN/Y2001/V43/I11/1154
Mackay, A. D. and Barber, S. A. (1984). Comparation of root and root hair growth in solution and soil culture. Journal. PLant Nutrition. 7:1745-1757. DOI: 10.1080/01904168409363317
Mollier, A. and S. Pellegrin. (1999). Maize root system growth and development as influenced by phosphorus deficiency. Journal Experimental. Bototany. 50:487-497. https://doi.org/10.1093/jxb/50.333.487
Morillo, A., Sequera, O. and Ramirez, R. (2007). Roca fosfórica acidulada como fuente de fósforo en un suelo ácido con o sin encalado. Bioagro, 19(3): 161-168. https://www.redalyc.org/articulo.oa?id=85719306
Murphy, J. and Riley, J. (1962). A modified single solution method for the determination of phosphate in natural waters. Analitical Chemestry Acta. 27: 31-36. https://doi.org/10.1016/S0003-2670(00)88444-5
Olsen, S. R., Cole, C. V., Watanabe, F. S. and Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Cir. 939, USDA, Washington,D.C. identifier%3A%22urn%3Aoclc%3Arecord%3A1045362203%22
Panda, N. and Misra, U. K. (1970). Use of partially acidulated rock phosphate as possible mean of minimizing phosphate fixation in acid soils. Plant and Soil, 33: 225.234 http://www.jstor.org/stable/42946787
Ramirez, R. and López, M. (2000). Gronomic effectiveness of phosphate rock and superphosphatefor aluminum-tolerant and non tolerant sorghum cultivars. Communication Soil Science. Plant Analalisys., 31: 1169-1178. https://doi.org/10.1080/00103620009370505
Sachay, J., Wallace, R. L. and Johns, M. A. (1991). Phosphate stress response in hydroponically grown maize. Plant and Soil, 132: 85-90. https://doi.org/10.1007/BF00011015
Sequera, O. and Ramírez, R. (2013). Roca fosfórica acidulada con ácido sulfúrico y tiosulfato de amonio como fuente de fósforo para frijol en dos tipos de suelo. Bioagro, 25:39-46. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0378-18442003001000010&lng=es&nrm=iso
Sequera,O. and Ramirez, R. (2003). Fósforo, calcio y azufre disponibles de la roca fosfórica acidulada conn ácido sulfúrico y tiosulfato de amonio. Interciencia, 28: 604-610.http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0378-18442003001000010&lng=es&nrm=iso
Tennant, D. (1975). A test of a modified line intersect method of stimating root length . Journal Ecology, 63: 995-1001. https://doi.org/10.2307/2258617
Thomas, R., Sheard, R. and Meyer, J. (1967). Comparation of conventional and automated procedures for nitrogen, phosphorus an potasium analysis of plant material using a single digestion. Agronomy Journal. 59:240-243. https://doi.org/10.2134/agronj1967.00021962005900030010x
Yan Ding, Zeganc Wang Shuongrong Mo, Jing Liu, Yuan Xing, Yuanping Wang,
Cailin Ge and Yulong Wang. 2021. Mechanism of low phosphorus inducing the main root lengthening of rice. Journal of Plant Growth Regulation. 40:1032-1043. https://doi.org/10.1007/s00344-020-10161-w
Zoysa, A. K. N., Loganathan, P. and Hedley, M. (1997). A thecnique for studing rhizosphere processes in tree crops: Soil phosphorus depletion around camellia (Camellia japonica L.) roots. Plant and Soil, 190:253-265. https://doi.org/10.1023/A:1004264830936
Copyright (c) 2023 Ricardo Ramírez, Omaira Sequera
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.