Ecosystem approach to semi-intensive cultivation of Penaeus vannamei
Abstract
The ecosystem approach to semi-intensive culture of Penaeus vannamei is crucial for understanding and managing water quality and planktonic communities in aquaculture systems. This study focuses on analyzing the interrelationship between structural and functional elements, using phytoplankton and zooplankton as bioindicators of water quality and trophic conditions. The objective is to provide detailed information on the dynamics of these communities in culture systems, which will improve survival, feed conversion and shrimp production. A systematic review was carried out using specific keywords in relevant scientific databases, which made it possible to collect updated and relevant information on the topic. The discussion focuses on the importance of phytoplankton as a primary producer, its influence on water quality and its role in the diet of shrimp. Recommendations for maintaining a beneficial balance of phytoplankton communities in cropping systems are detailed. Furthermore, the role of zooplankton as a crucial link in the food chain is analyzed, providing recommendations on the desirable amount of zooplankton in semi-intensive farming. Strategies to address challenges related to primary productivity and food chains in culture ponds are also discussed. In conclusion, this study highlights the importance of the ecosystem approach in shrimp farming, underlining the need to understand and manage planktonic communities to achieve successful and sustainable aquaculture.
Downloads
References
Anderson, R.K., Parker, P.L., & Lawrence, A. (1987). A 13C/12C tracer study of the utilization of presented feed by a commercially important shrimp Penaeus vannamei in a pond grow out system1. Journal of the World Aquaculture Society, 18 (3), 148–155. https://doi.org/10.1111/j.1749-7345.1987.tb00433.x
Betancourt, Ó., Mertens, F., & Parra, M. (2016). Enfoques ecosistémicos en salud y ambiente. En Betancourt, Ó., Mertens, F., & Parra, M. (Eds.). Enfoques ecosistémicos en salud y ambiente: aportes teórico-metodológicos de una comunidad de práctica (pp. 103-158). Abya-Yala.
Brönmark, C., & Hansson, L. A. (2017). The biology of lakes and ponds. Oxford university press. https://jcsites.juniata.edu/faculty/merovich/limnology_files/Biology-of-Lakes-Ponds.pdf
Carpenter, S. R., & Kitchell, J. F. (eds.) (1993). The trophic cascade in lakes. Cambridge University Press.
Singh, U. B., Ahluwalia, A. S., Sharma, C., Jindal, R., & Thakur, R. K. (2013). Planktonic indicators: A promising tool for monitoring water quality (early-warning signals). Ecology, Environment and Conservation, 19(3), 793-800. https://shre.ink/2tvC
Boyd, C. E. (2001). Consideraciones sobre la calidad del agua y del suelo en cultivos de camarón. En M. C. Haws y C. E. Boyd. (eds.). Métodos para mejorar la camaronicultura en Centroamérica. (pp. 1-30). Editorial-Imprenta UCA.
Boyd, C. E. (2015). Water Quality. Springer. DOI:10.1007/978-3-319-17446-4
Boyd, C. E. (30 de enero de 2017a). El fitoplancton es un componente crítico de los ecosistemas de estanques acuícolas. https://www.globalseafood.org/advocate/el-fitoplancton-es-un-componente-critico-de-los-ecosistemas-de-estanques-acuicolas/
Boyd, C. (26 de mayo de 2017b). Cómo la descomposición de la materia orgánica impacta los estanques acuícolas. Global Aquaculture Alliance. https://www.globalseafood.org/advocate/como-la-descomposicion-de-la-materia-organica-impacta-los-estanques-acuicolas/
Boyd, C. (28 de agosto de 2017c). El fitoplancton y su impacto en la calidad del agua. Global Aquaculture Alliance. https://www.globalseafood.org/advocate/el-fitoplancton-y-su-impacto-en-la-calidad-del-agua/
Brito, L. O., dos Santos, I. G. S., de Abreu, J. L., de Araujo, M. T., Severi, W., & Galvez, A. O. (2016). Effect of the addition of diatoms (N. avicula spp.) and rotifers (B. rachionus plicatilis) on water quality and growth of the Litopenaeus vannamei postlarvae reared in a biofloc system. Aquaculture Research, 47(12), 3990-3997. https://doi.org/10.1111/are.12849
Casé, M., Leça, E. E., Leitão, S. N., Sant, E. E., Schwamborn, R., & de Moraes Junior, A. T. (2008). Plankton community as an indicator of water quality in tropical shrimp culture ponds. Marine Pollution Bulletin, 56(7), 1343-1352. https://doi.org/10.1016/j.marpolbul.2008.02.008
Chen, J., Li, W., Chen, W., Ma, Q., & Chen, K. (2018). Variation of environmental factors and dominant population succession of microalgae planktonic in closed shrimp pond. Agricultural Biotechnology, 7(6), 188-191. https://www.proquest.com/scholarly-journals/variation-environmental-factors-dominant/docview/2449279160/se-2
Clifford, H. C. (1994). El manejo de estanques camaroneros. Camarón´94. Seminario Internacional de Cultivo de Camarón. Mazatlán, México.
Codina, L. (2018). Science Direct: Base de datos y plataforma digital de Elsevier. Lluís Codina. Disponible en línea: https://www.lluiscodina.com/science-direct-elsevier/ Recuperado abril de 2023.
Davidson, M. (1983). Uncommon sense: The life and thought of Ludwig von Bertalanffy (1901-1972), father of general systems theory. United States. 247 p
Gil, L. (2015). Google Scholar: El buscador académico con mayor impacto. Social Media en Investigación - Un proyecto de Lydia Gil. https://socialmediaeninvestigacion.com/google-scholar-buscador-academico/ Recuperado abril de 2023.
González, C., Vallarino, A., Pérez, J., & Low, A. (2014). Bioindicadores: guardianes de nuestro futuro ambiental. El Colegio de la Frontera Sur (Ecosur) e Instituto Nacional de Ecología y Cambio Climático (INECC). 782 p.
Qiao, L., Chang, Z., Li, J., & Chen, Z. (2020). Phytoplankton community succession in relation to water quality changes in the indoor industrial aquaculture system for Litopenaeus vannamei. Aquaculture, 527, 735441. https://doi.org/10.1016/j.aquaculture.2020.735441.
Lucas, J. S., Southgate, P. C., & Tucker, C. S. (Eds.). (2019). Aquaculture: Farming aquatic animals and plants. John Wiley & Sons. (3rd ed.) United States. 672 p.
Martínez-Córdova, A. L. (2008). Importancia de la alimentación artificial en el cultivo de camarón. Estrategias de alimentación en la etapa de engorde del camarón. CIBNOR, SA, CYTED y PRONACA, 110.
Masithah, E. D., Nindarwi, D. D., Husin, D., & Rahma, T. (2019). Dynamic ratio correlation of N:P toward phytoplankton explosions in intensive systems of white shrimp pond. In IOP Conference Series: Earth and Environmental Science (Vol. 236, No. 1, p. 012019). IOP Publishing. https://doi:10.1088/1755-1315/236/1/012019
Mohanty, R. K., Ambast, S. K., Panigrahi, P., & Mandal, K. G. (2018). Water quality suitability and water use indices: useful management tools in coastal aquaculture of Litopenaeus vannamei. Aquaculture. 485, 210−219. https://doi.org/10.1016/j.aquaculture.2017.11.048
Nesara, K., & Bedi, C. (2019). Diatomix: A diatoms enhancer. Journal of FisheriesSciences.com, 13(2), 012-015.
Odum, E., & Barret, G. (2006). Fundamentos de Ecología. (5ta ed.). Cengage Learning.
Parmar, T. K., Rawtani, D., & Agrawal, Y. K. (2016). Bioindicators: the natural indicator of environmental pollution. Frontiers in Life Science, 9(2), 110-118. https://doi.org/10.1080/21553769.2016.1162753
Pérez, J. C. R., & Mancilla, C. L. A. (2012). El papel del silicio en los organismos y ecosistemas. Conciencia Tecnológica, 2012(43), 42-46. https://dialnet.unirioja.es/servlet/articulo?codigo=3985098
Pérez-Morales, A., Band-Schmidt, C. J., & Martínez-Díaz, S. F. (2017). Mortality on zoea stage of the Pacific white shrimp Litopenaeus vannamei caused by Cochlodinium polykrikoides (Dinophyceae) and Chattonella spp. (Raphidophyceae). Marine Biology, 164(3), 57. https://doi.org/10.1007/s00227-017-3083-3
Ramage, M., & Shipp, K. (2009). Systems thinkers (pp. I-VII). London: Springer. https://doi.org/10.1007/978-1-4471-7475-2
Rajeev, M., Jung, I., Song, J., Kang, I., & Cho, J. C. (2023). Comparative microbiota characterization unveiled a contrasting pattern of floc-associated versus free-living bacterial communities in biofloc aquaculture. Aquaculture, 577, 739946. https://doi.org/10.1016/j.aquaculture.2023.739946
Reynolds, C. S. (1984). The ecology of freshwater phytoplankton. Cambridge University Press
Saraswathy, R., Muralidhar, M., Ravichandran, P., Lalitha, N., Sabapathy, V. K., & Nagavel, A. (2013). Plankton diversity in Litopenaeus vannamei cultured ponds. International journal of Bio-resource and Stress Management, 4(2), 114-118. https://www.researchgate.net/publication/362704793_Plankton_density_and_diversity_in_Litopenaeus_vannamei_culture_ponds_of_Haryana_Accepted
Singh, U. B., & Ahluwalia, A. S. (2013). Microalgae: a promising tool for carbon sequestration. Mitigation and Adaptation Strategies for Global Change, 18(1), 73-95. https://doi.org/10.1007/s11027-012-9393-3
Trujillo, L. E., Rivera, L., Hardy, E., Llumiquinga, E. M., Garrido, F., Chávez, J. A., ... & País-Chanfrau, J. M. (2017). Estrategias Naturales para Mejorar el Crecimiento y la Salud en los Cultivos Masivas de Camarón en Ecuador. Revista Bionatura, 1-17. http://dx.doi.org/10.21931/RB/2017.02.02.8
Verma, R., Singh, U. B., & Singh, G. P. (2012). Seasonal distribution of phytoplankton in Laddia dam in Sikar district of Rajasthan. Vegetos, 25(2), 165-173. https://shre.ink/2tds
Wang, M., Feng, W., Wang, Y., Li, B., Wang, J., Zhu, X., & Zhang, L. (2022). Water quality, plankton composition, and growth performance of juvenile yellow catfish (Pelteobagrus fulvidraco) in mono- and polyculture systems. Aquaculture, 552, 738017–738017. https://doi.org/10.1016/j.aquaculture.2022.738017
Zhang, D., Wang, X., Xiong, J., Zhu, J., Wang, Y., Zhao, Q., Chen, H., Guo, A., Wu, J. & Dai, H. (2014). Bacterioplankton assemblages as biological indicators of shrimp health status. Ecological indicators, 38, 218-224. https://doi.org/10.1016/j.ecolind.2013.11.002
Copyright (c) 2023 Nancy Hernández, Randi Guerrero-Ríos
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.