Typology of production units and livestock technologies for adaptation to drought in Sinaloa, Mexico
Abstract
Drought as an effect of climate change affects the productivity and sustainability of livestock systems. The objective of this study was to analyze how technological land management for adaptation to climate change adopted by livestock farmers in southern Sinaloa, Mexico, corresponds to the typologies identified in the study area. A non-probabilistic sampling was applied, selecting 50 production units (UP) in six municipalities of Sinaloa, whose information was analyzed by cluster analysis and descriptive statistics. It was identified three livestock typologies. Cluster 1 (46 %), was defined as subsistence since its production units (PU) have few animals and showed the smallest total surface area, the producers are the oldest and use the shade in paddocks and the adjustment of stocking rates as drought mitigation practices. Cluster 2 (46 %), showed the medium productive behavior, conformed by younger producers whose PU showed a larger area of crops and rangeland, this group adopted stocking rate adjustment, forage conservation and species diversification as mitigation measures. Cluster 3 (8 %) showed the highest total area, livestock inventory and productivity levels; drought mitigation decisions are focused on stocking rate adjustment and forage conservation. The study identified mitigation practices related to land use from the farmers’ point of view. These results can be used to conduct studies in similar environments and to scale adaptation measures for climate change from the local level and by type of farmer
Downloads
References
Ali, A. & Erenstein, O. (2017). Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Climate Risk Management, 16, 183-194. https://doi.org/10.1016/j.crm.2016.12.001
Bautista-Martínez, Y., Granados-Zurita, L., Joaquín-Cancino, S., Ruiz-Albarrán, M., Garay-Martínez, J. R., Infante-Rodriguez, F., & Granados Rivera, L. D. (2020). Factores que determinan la producción de becerros en el sistema vaca-cría del Estado de Tabasco, México. Nova scientia, 12(25). https://doi.org/10.21640/ns.v12i25.2117
Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). (2022). Selvas secas. https://www.biodiversidad.gob.mx/ecosistemas/selvaSeca
Cullen, B., Ayre, M., Reichelt, N., Nettle, R., Hayman, G., Armstrong, D.P., Beilin, R. & Harrison, M.T. (2021). Climate change adaptation for livestock production in southern Australia: transdisciplinary approaches for integrated solutions. Animal Frontiers: The Review Magazine of Animal Agriculture, 11, 30-39. https://doi.org/10.1093/af/vfab046
Cuevas-Reyes, V. y Rosales-Nieto, C. (2018). Caracterización del sistema bovino doble propósito en el noroeste de México: productores, recursos y problemática. Revista MVZ Córdoba, 23(1). https://doi.org/10.21897/rmvz.1240
Cuevas-Reyes, V. (2019). Factores que determinan la adopción del ensilaje en unidades de producción ganaderas en el trópico Seco del Noroeste de México. Ciencia y Tecnología Agropecuaria, 20(3), 467-477 https://doi.org/10.21930/rcta.vol20num3art:1586
Chará, J., Reyes, E., Peri, P., Otte, J., Arce, E. & Schneider, F. (2019). Silvopastoral Systems and Their Contribution to Improved Resource Use and Sustainable Development Goals: Evidence from Latin America. https://www.fao.org/documents/card/fr?details=CA2792EN
Enríquez, Q.J.F., Esqueda, E.V.A. y Martínez, M.D. (2021). Rehabilitación de praderas degradadas en el trópico de México. Revista Mexicana de Ciencias Pecuarias, 12(Supl. 3), 243-260. https://doi.org/10.22319/rmcp.v12s3.5876
Esquivel-Mimenza, H., Ibrahim, M., Harvey, C.A., Támara, B. & Sinclair, F.L. (2011). Dispersed trees in pasturelands of cattle farms in a tropical dry ecosystem. Tropical and subtropical agroecosystems, 14(3), 933-941. https://www.scielo.org.mx/pdf/tsa/v14n3/v14n3a6.pdf
Esqueda, C.M.H., Sosa, R.E.E., Chávez, S.A.H., Villanueva, A.F., Lara, R.M.J., Royo, M.M.H., Sierra, T.J.S., González, S.A. y Beltrán, L.C. (2011). Ajuste de carga animal en tierras de pastoreo. Manual de capacitación. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Folleto Técnico No. 4. https://redgatro.fmvz.unam.mx/publicaciones.html#section3
FAO. (2018). Soluciones ganaderas para el cambio climático. https://www.fao.org/3/I8098ES/i8098es.pdf
Feder, G., Just, R. & Zilberman, D. (1985). Adoption of Agricultural Innovations in Developing Countries: A Survey. Economic Development and Cultural Change, 33(2), 255-298. https://doi.org/10.1086/451461
Girma, A.S. & Zelalem, B.E. (2022). Drought vulnerability and impacts of climate change on livestock production and productivity in different agroEcological zones of Ethiopia. Journal of Applied Animal Research, 50(1), 471-489. https://doi.org/10.1080/09712119.2022.2103563
Gerber, P.J., Hristov, A.N., Henderson, B., Makkar, H., Oh, J., Lee, C., Meinen, R., Montes, F., Ott, T., Firkins, J., Rotz, A., Dell, C., Adesogan, A.T., Yang, W.Z., Tricarico, J.M., Kebreab, E., Waghorn, G., Dijkstra, J. & Oosting, S. (2013). Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: a review. Animal, 7(2), 220–234. doi:10.1017/S1751731113000876
Guízar, N.E., González, E.A., Díaz, O.A. (1994). Composición Florística del agostadero en las comunidades de El Huajote y Malpica, municipio de Concordia, Sinaloa. Universidad Autónoma Chapingo.
Habte, M., Eshetu, M., Maryo, D. & Andualem, L.A. (2022). Effects of climate variability on livestock productivity and pastoralist’s perception: the case of drought resilience in Southeastern Ethiopia. Veterinary and Animal Science, 16. https://doi.org/10.1016/j.vas.2022.100240
Hernández, G.O. (2021). Aproximación a los distintos tipos de muestreo no probabilístico que existen. Revista Cubana de Medicina General Integral, 37(3):e1442. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-21252021000300002
Hernández, E.L.A., Moreno, G.T., Loaiza, M.A. y Reyes, J.J.E. (2010). Gavatero-203, nueva variedad de sorgo forrajero para el estado de Sinaloa. Revista Mexicana de Ciencias Agrícolas, 1(5), 727-731. https://www.scielo.org.mx/pdf/remexca/v1n5/v1n5a13.pdf
IBM Corporation. (2022). SPSS software. https://www.ibm.com/mx-es/analytics/spss-statistics-software
Instituto Nacional de Estadística y Geografía, INEGI. (2021). Resumen Sinaloa. Instituto Nacional de Estadística y Geografía, INEGI (2022). Censo Agropecuario 2022. https://www.inegi.org.mx/programas/ca/2022/#Tabuladoshttps://en.www.inegi.org.mx/contenidos/app/areasgeograficas/resumen/resumen_25.pdf
Instituto Nacional de Estadística y Geografía, INEGI. (2023). Monografía, clima. https://www.cuentame.inegi.org.mx/monografias/informacion/sin/territorio/clima.aspx?tema=me&e=25
Juárez-Barrientos, J. M., Herman-Lara, E., Soto-Estrada, A., Ávalos-de la Cruz, D. A., Vilaboa-Arroniz, J. y Díaz-Rivera, P. (2015). Tipificación de sistemas de doble propósito para producción de leche en el distrito de desarrollo rural 008, Veracruz, México. Revista Científica, XXV(4), 317-323. https://www.redalyc.org/comocitar.oa?id=95941173007
Loaiza, M.A. (2011). Tecnologías productivas para ganaderos de Sinaloa. México. Fundación Produce Sinaloa. https://www.fps.org.mx/portal/index.php/paquetes-tecnológicos/108-bovinos/1833tecnologias-productivas-para-ganaderos-de-sinaloa
McNamara, K. T., Wetzstein, M. E. & Douce, G. K. (1991). Factors Affecting Peanut Producer Adoption of Integrated Pest Management. Review of Agricultural Economics, 13(1),129-139. https://doi.org/10.2307/1349563
Mishra, A.K. & Singh, V.P. (2010). A Review of Drought Concepts. Journal of Hydrology, 391, 202-216. https://doi.org/10.1016/j.jhydrol.2010.07.012
Ortega-Gaucin, D., Cruz-Bartolón, J., y Castellano-Bahena HV. (2018). Drought Vulnerability Indices in Mexico. Water, 10(11), 1671. https://doi.org/10.3390/w10111671
Pennington, R.T., Prado, D.E. & Pendry, C.A. (2000). Neotropical seasonally dry forests and Quaternary vegetation changes. Journal of Biogeography, 27, 261–273. https://doi.org/10.1046/j.1365-2699.2000.00397.x
Pérez, P.C. (2008). Técnicas de análisis multivariante de datos. Editorial Pearson.
Pimm, S. L., Jenkins, C. N., Abell, R., Brooks, T. M., Gittleman, J. L., Joppa, L. N., Raven, P. H., Roberts, C. M. & Sexton, J. O. (2014). The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344(6187), 1246752. https://doi.org/10.1126/science.1246752.
Quinn, M.P. (2002). Qualitative Research & Evaluation Methods. Sage Publications.
Rzedowski, J. (1978). Vegetación de México. Editorial Limusa.
Reyes, J.J.E., Loaiza, M.A., Gutiérrez, G.O.G y Cuevas, R.V. (2022). Tecnología de producción de mijo perla forrajero en Sinaloa. Campo Experimental Valle de Culiacán. Folleto técnico, Núm. 71. México. INIFAP. https://www.researchgate.net/publication/370252074_TECNOLOGIA_DE_PRODUCCION_DE_MIJO_PERLA_FORRAJERO_EN_SINALOA
Rojas-Downing, M.M., Nejadhashemi, A.P., Harrigan, T. & Woznicki, S.A. (2017). Climate change and livestock: Impacts, adaptation, and mitigation. Climate Risk Management, 16, 145–163. https://doi.org/10.1016/j.crm.2017.02.001
Tapasco, J., LeCoq, J.F., Ruden A., Rivas, J.S. & Ortiz, J. (2019). The Livestock Sector in Colombia: Toward a Program to Facilitate Large-Scale Adoption of Mitigation and Adaptation Practices. Frontiers in Sustainable Food Systems, 3,61. https://doi.org/10.3389/fsufs.2019.00061
Vilà-Baños, R. Rubio-Hurtado, M. J., Berlanga-Silvente, V. y Torrado-Fonseca, M. (2014). Cómo aplicar un cluster jerárquico en SPSS. Revista d’Innovació i Recerca en Educació, 7 (1), 113-127. http://www.ub.edu/ice/reire.htm
Villavicencio, G.M.R., Salazar, V.M.P. y Campillo, J.M. (2023). Adaptación al cambio climático con enfoque de economía circular para reducir la vulnerabilidad del sector ganadero extensivo en México: estado del arte. Regiones y Desarrollo Sustentable, 23(44). http://www.coltlax.edu.mx/openj/index.php/ReyDS/article/view/252
Copyright (c) 2024 Venancio Cuevas-Reyes, Alfredo Loaiza Meza, Obed Gutiérrez Gutiérrez, Germán Buendía Rodríguez, Cesar Rosales-Nieto
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.