Biosolubilization of phosphate by strains of Trichoderma in vitro and in greenhouse in three varieties of Coffea arabica

  • Rosa Arias Instituto de Ecología A.C. km 2.5 antigua carretera a Coatepec 361 Congregación el Haya, CP 91073, Xalapa, Veracruz, México. https://orcid.org/0000-0002-4703-5572
  • Alberto Torres Instituto de Ecología A.C. km 2.5 antigua carretera a Coatepec 361 Congregación el Haya, CP 91073, Xalapa, Veracruz, México. https://orcid.org/0009-0004-1054-2943
  • Yamel Perea Doctorado en Micología Aplicada, Centro de Investigación en Micología Aplicada, Universidad Veracruzana Médicos No. 5, U. H. del Bosque, CP 91010, Xalapa, Veracruz, México. https://orcid.org/0009-0009-9727-2910
  • Yadeneyro Cruz Facultad de Biología. Universidad Veracruzana, circuito Gonzalo Aguirre Beltrán s/n. Zona Universitaria, CP 91000, Xalapa, Veracruz, México. https://orcid.org/0000-0002-2034-6637
Keywords: phosphate solubilizing fungi (PSF), coffee plants, biofertilization

Abstract

Coffee soils have a low availability of phosphorus, the use of phosphate-solubilizing Trichoderma strains is a promising sustainable strategy for the management of phosphorus deficiencies. In this study in Mexico, we evaluated 10 strains of Trichoderma from the andosol soil of coffee plantations in Mexico and their capacity for phosphate solubilization in vitro, and their impact on the growth of coffee seedlings of three varieties (Anacafé, Costa Rica and Marsellesa) were evaluated. The tested microorganisms showed high phosphorus solubilization, the phosphorus solubilization ranged between 2.41 and 7.40 mg.mL-1. The maximum phosphate solubilizing activity was observed using two strains of Trichoderma harzianum 75.73 (Th53) and 74.62 mg.mL-1 (Th48) for calcium phosphate (Ca2PO4) and three strains of T. asperellum 22.99 (Th57), 22.90 (Th49) and 21.55 mg.mL-1 (Th40) for aluminum phosphate (AlPO4). In both calcium (Ca2PO4) and aluminum phosphate (AlPO4), a decrease in the pH of the medium was detected, from 4.81 to 3.73 and from 3.38 to 2.75, respectively. In the Anacafé variety, the application of two strains of T. harzianum (Th48 and Th53) favored greater availability of phosphorus in the substrate, while in the Costa Rica and Marsellesa varieties the available phosphorus of the substrate was greater with T. harzianum (Th48). Inoculation with these Trichoderma strains is potentially important for the solubilization of insoluble phosphorus and the development of coffee plants.

Downloads

Download data is not yet available.

References

Arias, R. M., & Heredia, G. (2014). Fungal diversity in coffee plantation systems and in a tropical montane cloud forest in Veracruz, Mexico. Agroforestry systems, 88, 921-933. https://doi.org/10.1007/s10457-014-9736-z
Arias, R. M., Heredia, G., Perea-Rojas, Y. del C., de la Cruz, E.Y., & García G. K. Y. (2023). Selection and characterization of phosphate-solubilizing fungi and their effects on coffee plantations. Plants, 12(19), 3395. https://doi.org/10.3390/plants12193395
Arias, R. M., Juárez, G.A., Heredia, G., & de la Cruz, E. Y. (2022). Capacidad fosfato solubilizadora de hongos rizosféricos provenientes de cafetales de Jilotepec, Veracruz. Alianzas y Tendencias BUAP, 7(27), 6986. http://doi.org/10.5281/zenodo.7094878
Bader, A. N., Salerno, G. L., Covacevich, F., & Consolo, V. F. (2020). Native Trichoderma harzianum strains from Argentina produce indole-3 acetic acid and phosphorus solubilization, promote growth and control wilt disease on tomato (Solanum lycopersicum L.). Journal of King Saud University Science, 32(1), 867–873. https://doi.org/10.1016/j.jksus.2019.04.002
Bononi, L., Chiaramonte, J. B., Pansa, C. C., Moitinho, M. A., & Melo, I. S. (2020). Phosphorus-solubilizing Trichoderma spp. from Amazon soils improve soybean plant growth. Scientific Reports, 10(1), 2858. https://doi.org/10.1038/s41598-020-59793-8
Bray, R. H., & Kurtz. L. T. (1945). Determination of total, organic and available forms of phosphorus in soil. Soil Science, 59, 39-45. DOI:10.1097/00010694-194501000-00006
Cano, M. 2015. Interacción de microorganismos benéficos en plantas: Micorrizas, Trichoderma spp. y Pseudomonas spp. una revisión. Revista U.D.C.A Actualidad & Divulgación Científica, 14(2), 15-31.
Chagas, L. F. B., De Castro, H. G., Colonia, B. S. O., De Carvalho Filho, M. R., Miller, L. D. O., & Chagas, A. F. J. (2016). Efficiency of Trichoderma spp. as a growth promoter of cowpea (Vigna unguiculata) and analysis of phosphate solubilization and indole acetic acid synthesis. Brazilian Journal of Botany, 39(2), 437-445. https://doi.org/10.1007/s40415-015-0247-6
Clesceri, S., Greenberg, A., & Trusell, R. (1992). Métodos normalizados para el análisis de aguas potables y residuales. 17th ed. Madrid: Ediciones Díaz de Santos.
Galeano, R. M. S., Ribeiro, J. V. S., Silva, S. M., de Oliveira-Simas, A. L., de Alencar-Guimarães, N. C., Masui, D. C., Corrêa, B. O., Giannesi, G. C., Ferreira de Lima, S., da Silva-Brasil, M., & Zanoelo, F. F. (2024). New strains of Trichoderma with potential for biocontrol and plant growth promotion improve early soybean growth and development. Journal Plant Growth Regulation, 43, 4099–4119. https://doi.org/10.1007/s00344-024-11374-z
Gams, W., & Bissett, J. (2002). Morphology and identification of Trichoderma Vol 1. Basic biology, taxonomy and genetics. In P. C. Kubicek & G. E. Harman (Eds.), Trichoderma and Gliocladium (pp. 3-31). Taylor and Francis.
Geissert, D., & Ibañez, A. (2008). Calidad y ambiente físico-químico de los suelos. In R. Manson, V. Hernández-Ortiz, S. Gallina & K. Mehltreter (Eds.), Agrosistemas cafetaleros de Veracruz: Biodiversidad, Manejo y Conservación (pp. 213-221). Instituto de Ecología, A.C. (INECOL) e Instituto Nacional de Ecología (INE-SEMARNAT).
Hernández-Leal, T. I., Carrión, G., & Heredia, G. (2011). In vitro phosphate solubilization by a strain of Paecilomyces lilacinus (Thom) Samson. Agrociencia, 45(8), 881-892. https://www.scielo.org.mx/scielo.php?pid=S1405-31952011000800003&script=sci_abstract&tlng=en
Huerta, P. G., & Holguín, M. (2019). La microbiota del cafetal, modulador del daño producido por insectos y enfermedades. In B. E. Bello, L. Soto Pinto, P. G. Huerta, R. J. Gómez (Eds.), Caminar el cafetal: perspectivas socioambientales del café y su gente (pp. 49-64). El Colegio de la Frontera Sur. https://biblioteca.ecosur.mx/cgi-bin/koha/opac-retrieve-file.pl?id=29766d1b642f4ea743b565b20e921ff6
Kaissoumi, H. E. L., Berbera, F., Mouden, N., OuazzaniChandi, A., Ouazzani, T. A., Selmaoui, K., Benkirane, R., & Douira, A. (2024). Tomato growth promotion by Trichoderma asperellum laboratory-made bioproduct. In M. Azrour, J. Mabrouki & A. Guezzaz. (Eds.), Sustainable and Green Technologies for Water and Environmental Management (pp. 161-171). World Sustainability Series. Springer, Cham. https://doi.org/10.1007/978-3-031-52419-6_13
Kribel, S., Qostal, S., Ouazzani-Touhami, A., Selmaoui, K., Chliyeh, M., Benkirane, R., Achbani, E. H., & Douira, A. (2019). Qualitative and quantitative estimation of the ability of Trichoderma spp. Moroccan isolates to solubilize tricalcium phosphate. Plant Cell Biotechnology and Molecular Biology, 20 (7-8), 275-284. DOI: 10.1556/038.54.2019.016
Li, R. X., Cai, F., Pang, G., Shen, Q. S., Li, R., & Chen, W. (2015). Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. PLoS One, 10(6), e0130081. https://doi.org/10.1371/journal.pone.0130081
Liebersbach, H., Steingrobe, B., & Claassen, N. (2004). Roots regulate ion transport in the rhizosphere to counteract reduced mobility in dry soil. Plant and Soil, 260, 79-88. https://doi.org/10.1023/B:PLSO.0000030191.92338.6a
Menezes-Blackburn, D., Paredes, C., Zhang, H., Giles, C. D., Darch, T., Stutter, M., George, T. S., Shand, C., Lumsdon, D., Cooper, P., Wendler, R., Brown, L., Blackwell, M., Wearing, C., & Haygarth, P. M. (2016). Organic acids regulation of chemical–microbial phosphorus transformations in soils. Environmental Science & Technology Journal, 50(21), 11521–11531. 10.1021/acs.est.6b03017 https://pubs.acs.org/doi/10.1021/acs.est.6b03017
Mulatu, A., Megersa, N., Abena, T., Kanagarajan, S., Liu, Q., Tenkegna, T. A., & Vetukuri, R. R. (2022). Biodiversity of the genus Trichoderma in the rhizosphere of coffee (Coffea arabica) plants in Ethiopia and their potential use in biocontrol of coffee wilt disease. Crops, 2(2), 120-141. https://doi.org/10.3390/crops2020010
National Center for Biotechnology Information (NCBI). (2024). Trichoderma Internal Transcribed Spacer RNA (ITS), Fungal Internal Transcribed Spacer RNA (ITS) RefSeq Targeted Loci Project. Available online: https://www.ncbi.nlm.nih.gov/nuccore/?term=Trichoderma+its+type (Consulted january 2024).
Oliveros-Bastidas, A. D. J., Macías, F. A., Fernández, C. C., Marín, D., & Molinillo, J. M. (2009). Exudados de la raíz y su relevancia actual en las interacciones alelopáticas. Química Nova, 32, 198-213. https://doi.org/10.1590/S0100-40422009000100035
Osorno, L., & Osorio, N. (2014). Effect of carbon and nitrogen source and concentration on rock phosphate dissolution induced by fungi. Journal of Applied Biotechnology, 2(2), 32-42. 10.5296/jab.v2i2.5475 https://www.macrothink.org/journal/index.php/jab/article/view/5475
Perea-Rojas, Y. C., Arias, R. M., Medel, Ortiz, R., Trejo, A. D., Heredia, G., & Rodríguez, Y. Y. (2019). Effects of native arbuscular mycorrhizal and phosphate-solubilizing fungi on coffee plants. Agroforestry Systems, 93, 961–972. https://doi.org/10.1007/s10457-018-0190-1
Pikovskaya, R. I. (1948). Mobilization of phosphorus in soil in con-nection with vital activity of some microbial species. Mikrobiologiya, 17, 362-70.
Prasad, A., Dixit, M., Meena, S. K., & Kumar, A. (2023). Qualitative and quantitative estimation for phosphate solubilizing ability of Trichoderma isolates: A natural soil health enhancer. Materials Today: Proceedings, 81, 360-366. https://doi.org/10.1016/j.matpr.2021.03.305
Sadeghian, S., Alarcon, V. F., Díaz-Poveda, V., Lince-Salazar, L. A., & Rey-Sandoval, J. C. (2019). Fertilidad del suelo y manejo de la nutrición. En Centro Nacional de Investigaciones de Café (Ed.), Aplicación de ciencia tecnología e innovación en el cultivo del café ajustado a las condiciones particulares del Huila (pp. 80–105). Cenicafé. https://doi.org/10.38141/10791/0005_4
Souchie, E., Azcón, R., Barea, J., Silva, E., Saggin-Júnior, O. (2010). Enhancement of clover growth by inoculation of P-solubilizing fungi and arbuscular mycorrhizal fungi. Anais da Academia Brasileira de Ciências, 82(3), 771-777. https://www.scielo.br/j/aabc/a/88xv7fcjktmPnkshbm6xGJF/?lang=en
Tandon, A., Fatima, T., Shukla, D., Tripathi, P., Srivastava, S., & Singh, P. C. (2020). Phosphate solubilization by Trichoderma koningiopsis (NBRI-PR5) under abiotic stress conditions. Journal of King Saud University, 32(1), 791-798. https://doi.org/10.1016/j.jksus.2019.02.001
White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D.H. Gelfand, J. J. Sninsky & T. J. White (Eds), PCR protocols: a guide to methods and applications (pp. 315-322). Academic Press.
Yang, T., Li, L., Wang, B., Tian, J., Shi, F., Zhang, S., & Wu, Z. (2022). Isolation, mutagenesis, and organic acid secretion of a highly efficient phosphate-solubilizing fungus. Frontiers in Microbiology, 13, 793122. https://doi.org/10.3389/fmicb.2022.793122
Zhang, Y., Chen, F.S., Wu, X.Q., Luan, F.G., Zhang, L.P., Fang, X.M., Wan, S.Z., Hu, X.F., & Ye, J.R. (2018). Isolation and characterization of two phosphate-solubilizing fungi from rhizosphere soil of moso bamboo and their functional capacities when exposed to different phosphorus sources and pH environments. PLoS One, 13(7), e0199625. https://doi.org/10.1371/journal.pone.0199625
Zin, N. A., & Badaluddin, N. A. (2020). Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences, 65(2), 168-178. https://doi.org/10.1016/j.aoas.2020.09.003
Published
2024-11-18
How to Cite
Arias, R., Torres, A., Perea, Y., & Cruz, Y. (2024). Biosolubilization of phosphate by strains of Trichoderma in vitro and in greenhouse in three varieties of Coffea arabica. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 41(4), e244241. Retrieved from https://mail.produccioncientificaluz.org/index.php/agronomia/article/view/42932
Section
Crop Production