Control of ball moss (Tillandsia recurvata L.) in fruit trees in the central region of Peru

Keywords: Tillandsia recurvata L., control of epiphytes, sodium bicarbonate in fruit trees, agricultural use of vinegar, ball moss

Abstract

In the current era, it is common to witness the massive proliferation of epiphytes, particularly the species Tillandsia recurvata L., commonly known as ball moss, which adhere in large quantities to fruit trees of various species, affecting fruit growing in the inter-Andean valleys of Peru. This species causes a gradual but constant deterioration of the trunks and branches of the fruit vegetation, causing its eventual death, therefore, the purpose of the present study was to evaluate the combination of sodium bicarbonate, copper sulfate, vinegar, and yeast in the control of Tillandsia recurvata L. A completely randomized block design was applied with 10 treatments and 5 repetitions. The following variables were evaluated: weight, moisture loss, and grade of epiphyte damage. The results determined that sodium bicarbonate significantly reduced the weight of T. recurvata, decreasing from 2.2 g to 0.26 g; regarding moisture loss, an increase was observed from 25.62 % to 91.65 %, as well as damage and mortality increased significantly with the vinegar + sodium bicarbonate treatment. In conclusion, treatments with sodium bicarbonate and vinegar + sodium bicarbonate caused the greatest damage and mortality in ball moss.

Downloads

Download data is not yet available.

References

Aguilar-Rodríguez, S., Terrazas, T., Huidobro-Salas, M. E., & Aguirre-León, E. (2016). Anatomical and histochemical bark changes due to growth of Tillandsia recurvata (ball moss). Botanical Sciences, 94(3), 551-562. https://doi.org/10.17129/botsci.531
Alvarado-Rosales, D., & Saavedra-Romero, L. de L. (2024). Situación del musgo bola (Tillandsia recurvata L.) en un área verde institucional: Ball moss (Tillandsia recurvata L.) situation in an institutional green area. E-CUCBA, (21), 25–35. https://doi.org/10.32870/e-cucba.vi21.320
Apodaca, M. J., & Guerrero, E. L. (2019). ¿Por qué se expande hacia el sur la distribución geográfica de Tillandsia recurvata (Bromeliaceae)?. Boletín de la Sociedad Argentina de Botánica, 54(2),1-10. https://doi.org/10.31055/1851.2372.v54.n2.24371
Bartoli, C. G., Beltrano, J., Fernandez, L. V., & Caldiz, D. O. (1993). Control of the epiphytic weeds Tillandsia recurvata and Tillandsia aëranthos with different herbicides. Forest Ecology and Management, 59(3-4), 289-294. https://doi.org/10.1016/0378-1127(93)90008-B
Beltrán, L., A. Arredondo G., & R. Nieto C. (2020). Evaluación y control de T. recurvata en ecosistemas forestales del semidesierto de San Luis Potosí. San Luis Potosí, México. 14 pp.
Beltrán, S., Loredo, C., Rosales, C., & Gámez, H. (2020). Control de paxtle (Tillandsia recurvata) en mezquiteras de zonas áridas y semiáridas. CIRNE-INIFAP, In Memoria del XLI Congreso nacional de la ciencia de la maleza (p. 71). https://somecima.com/wp-content/uploads/2020/12/Memoria-congreso-SOMECIMA-2020.pdf
Borges e Silva, B. A., Bandoni Chaves, M. P., Silvério, H. F., Ramos, F. N., de Oliveira, J. P. V., de Castro, E. M., & Pereira, F. J. (2023). Survival, and anatomical and ecophysiological changes in isolated individuals of Tillandsia recurvata L. (Bromeliaceae) grown under different shading conditions. Botany, 101(3), 65-74. https://doi.org/10.1139/cjb-2022-0093
Buitrago Posada, D., Chaparro, M. A., & Duque-Trujillo, J. F. (2023). Magnetic Assessment of Transplanted Tillandsia spp.: Biomonitors of Air Particulate Matter for High Rainfall Environments. Atmosphere, 14(2), 213. https://doi.org/10.3390/atmos14020213
Butron Hernández, M. (2014). Evaluación de esteron 47* my 2, 4 d amina, para el control de Tillandsia recurvata L. en (Pinus cembroides zucc.) en el tejido cuauhtémoc, saltillo, coahuila. http://repositorio.uaaan.mx:8080/handle/123456789/1012
Cabrera, G. M., Gallo, M., & Seldes, A. M. (1995). A 3, 4-seco-cycloartane derivative from Tillandsia usneoides. Phytochemistry, 39(3), 665-666. https://www.sciencedirect.com/science/article/abs/pii/003194229500076J
Castañeda, Y. A. L., López, S. N. C., Pérez, C. E. M., Muñoz, E. A. C., & Becerril, J. C. P. (2023). Artrópodos asociados a Tillandsia recurvata (L.) L. (Bromeliaceae) en ambientes semiáridos del municipio de Tecozautla, Hidalgo, México. TIP Revista Especializada en Ciencias Químico-Biológicas, 26, 1-13. https://doi.org/10.22201/fesz.23958723e.2023.526
Castellanos-Vargas, I., Cano-Santana, Z., y Hernández-López, B. (2009). Efecto de Tillandsia recurvata L. (Bromeliaceae) sobre el éxito reproductivo de Fouquieria splendens Engelm. (Fouquieriaceae). Ciencia Forestal en México, 34(105), 197-207. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-35862009000100011
Ceballos, S. J. (2023). Vascular epiphytes in Argentinian Yungas: Distribution, diversity, and ecology. The Botanical Review, 89(1), 91-113. https://doi.org/10.1007/s12229-022-09281-7
Cortés-Anzúres, B. O., Corona-López, A. M., Damon, A., Mata-Rosas, M., & Flores-Palacios, A. (2020). Phorophyte type determines epiphyte-phorophyte network structure in a Mexican oak forest. Flora, 272, 151704. https://doi.org/10.1016/j.flora.2020.151704
Di Rienzo, J. A., Casanoves, F., Balzarani, M, G., González,L., Tablada, M. & Robledo, C. W. (2020). InfoStat version 2020. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar
Flores-Flores, J. D., Nájera-Castro, J. A., & Torres-Espinosa, L. M. (2016). Intensidades de aclareo y poda para el control del heno Tillandsia recurvata, en un bosque de Pinus cembroides. Revista Agraria, 13(1), 21-25. https://doi.org/10.59741/agraria.v13i1.576
Flores-Palacios, A., Toledo-Hernández, V. H., Corona-López, A. M., Valencia-Díaz S, Ruíz-Cancino J M., Coronado-Blanco & Nikolaevna - Myartseva S. (2012). ¿Son las plantas epífitas parásitos de los árboles? Evidencia de mecanismos de daño directo e indirecto. Centro de Investigación en Biodiversidad y Conservación (CIByC), Universidad Autónoma del Estado de Morelos, México; Facultad de Ingeniería y Ciencias, Universidad Autónoma de Tamaulipas, México. file:///C:/Users/User01/Downloads/Son_las_plantas_epifitas_parasitos_de_l.pdf
Flores-Palacios, A. (2017). Branch mortality influences phorophyte quality for vascular epiphytes. Botany, 95(7), 709-716. https://doi.org/10.1139/cjb-2017-0023
Gámez-Vázquez, H.G., Rosales-Nieto, C.A., Urrutia-Morales, J., Mellado, M.; Meza-Herrera, C.A., Vázquez-García, J.M., Hernández-Arteaga, L.E.S., Negrete-Sánchez, L.O., Loredo-Osti, C., Rivas-Jacobo, M.A., & Beltran -López, S. (2022). Effect of Replacing Sorghum Stubble with Tillandsia recurvata (L.) on Liveweight Change, Blood Metabolites, and Hematic Biometry of Goats. Biology, 2022, 11, 517. https://doi.org/10.3390/biology11040517
Gómez-Ramírez, A., Guevara-Herrera, R., Gutiérrez-Licona, M. & López-Maldonado, M. (2023). Reporte de aplicación de tratamientos de vinagre y carbonato para el control de Tillansia recurvata. e-CUCBA, 10(20),151–159. https://doi.org/10.32870/ecucba.vi20.307
Hawksworth, F.G. (1977). The 6-class dwarf mistletoe rating system. Gen. Tech. Rep. RM-48. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experimental Station.
Klumpp, A., Domingos, M., & Pignata, M. L. (2023). Air pollution and vegetation damage in South America—state of knowledge and perspectives. Environmental Pollution and Plant Responses, 111-136. http://doi.org/10.1201/9780203756935-7
Lafortezza, R., Ferreira, M. L., Ribeiro, A. P., Bollamann, H. A., Lima, L. N. A., Theophilo, C. Y. S., & Elia, M. (2023). Urban Forests and Air Pollution Mitigation: An Inextricable Nexus for Sustainable Cities. Available at SSRN 4444562. http://dx.doi.org/10.2139/ssrn.4444562
Miranda, A. G. C., Chaparro, M. A., Chaparro, M. A., & Böhnel, H. N. (2016). Magnetic properties of Tillandsia recurvata L. and its use for biomonitoring a Mexican metropolitan area. Ecological Indicators, 60, 125-136. https://doi.org/10.1016/j.ecolind.2015.06.025
Montana, C., Dirzo, R. & Flores, A. (1997). Structural parasitism of an epiphytic bromeliad upon cercidium praecox in an intertropical semiarid ecosystem. Biotropica, 29(4): 517- 521. 1997. https://www.jstor.org/stable/2388945
Morera-Gómez, Y., Alonso-Hernández, C. M., Armas-Camejo, A., Viera-Ribot, O., Morales, M. C., Alejo, D. & Santamaría, J. M. (2021). Pollution monitoring in two urban areas of Cuba by using Tillandsia recurvata (L.) L. and top soil samples: Spatial distribution and sources. Ecological Indicators, 126, 107667. https://doi.org/10.1016/j.ecolind.2021.107667
Parente, C. E. T., Carvalho, G. O., Lino, A. S., Sabagh, L. T., Azeredo, A., Freitas, D. F. S., Ramos, C. T., Rodrigo O. M., Virgílio, J. M., Ferreira, F., & Olaf , O. (2023). First assessment of atmospheric pollution by trace elements and particulate matter after a severe collapse of a tailings dam, Minas Gerais, Brazil: An insight into biomonitoring with Tillandsia usneoides and a public health dataset. Environmental Research, 233, 116435. https://doi.org/10.1016/j.envres.2023.116435
Pérez-Noyola, F. J., Flores, J., Yáñez-Espinosa, L., Jurado, E., González Salvatierra, C., & Badano, E. (2020). Is ball moss (Tillandsia recurvata) a structural parasite of mesquite (Prosopis laevigata)? Anatomical and ecophysiological evidence. Trees, 35(1), 135-144. https://doi.org/10.1007/s00468-020-02023-5
Piazzetta, K.D., Ramsdorf, W.A., & Maranho, L.T. Use of airplant Tillandsia recurvata L., Bromeliaceae, as biomonitor of urban air pollution. Aerobiologia, 35, 125–137 (2018). https://doi.org/10.1007/s10453-018-9545-3
Reséndiz-Vega, M., & Sánchez-Trujillo, G. (2021). Función ambiental y control de la heno motita (Tillandsia recurvata) en la cuenca atmosférica de Tula de Allende Hidalgo. Revista de Ciencias Ambientales y Recursos Naturales , 19–30. https://doi.org/10.35429/jesn.2021.19.7.19.30
Rodríguez-Robles, U., & Arredondo, T. (2022). The role of the geologic substrate on Tillandsia recurvata infestation and the development of forest decaying on a semiarid oak forest. Catena, 208,105724. https://doi.org/10.1016/j.catena.2021.105724
Sampieri, H. R. C., Fernández. C., & P. Baptista L. 1991. Metodología de la investigación. Segunda Edición. Mc Graw-Hill Interamericana Editores, S.A. de C.V. México D.F. 257 p.
Sánchez, B. M., Acosta, L. F. P., & Portugal, J. A. N. Q. (2022). Fenología y efecto de la intensidad de luz en la germinación in vitro de Masdevallia solomonii (Orchidaceae). Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales, 9(3), 56-67. https://doi.org/10.53287/kkqn7712ka32g
Servicio Nacional de Meteorología e Hidrología del Perú - SENAMHI. (2023). Descarga de datos meteorológicos. https://www.senamhi.gob.pe/?&p=estaciones
Velázquez-Cárdenas, Y., Rendón-Aguilar, B., & Espejo-Serna, A. (2021). Do Harvest Practices of Bromeliads and Forest Management in Sierra Norte of Oaxaca Have a Negative Effect on their Abundance and Phorophyte Preference?. Ethnobiology and Conservation, 10. https://doi.org/10.15451/ec2021-03-10.18-1-19
Wu, L., Liang, Y., Fu, S., Huang, Y., Chen, Z., y Chang, X. (2023). Biomonitoring trace metal contamination in Guangzhou urban parks using Asian tramp snails (Bradybaena similaris). Chemosphere, 334,138960. https://doi.org/10.1016/j.chemosphere.2023.138960
Published
2024-11-30
How to Cite
Valverde-Rodríguez, A., Alvarez-Benaute, L., Jara-Claudio, F., Illatopa-Espinoza, D., Cornejo, A., & Gabino-Benancio, E. (2024). Control of ball moss (Tillandsia recurvata L.) in fruit trees in the central region of Peru. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 41(4), e244142. Retrieved from https://mail.produccioncientificaluz.org/index.php/agronomia/article/view/42961
Section
Crop Production