Methane production and nutritional content from the diet consumed by grazing cattle

  • Elizabeth García CONAHCYT. Universidad Juárez del Estado de Durango, Programa Institucional de Doctorado en Ciencias Agropecuarias y Forestales, Río Papaloapan y Boulevard Durango. Col. Valle del Sur. C.P. 34120, Durango, Dgo., Mexico. https://orcid.org/0000-0002-6216-0267
  • Esperanza Herrera Instituto Tecnológico del Valle de Guadiana, México km 45, 34323, Villa Montemorelos, Dgo., Mexico. https://orcid.org/0000-0002-3821-4923
  • Manuel Murillo Universidad Juárez del Estado de Durango, Facultad de Veterinaria y Zootecnia, Mezquital km 11.5, Durango, Dgo., Mexico. https://orcid.org/0000-0002-5815-0779
  • Rafael Jiménez Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias-INIFAP, Campo Experimental Valle del Guadiana, Kilómetro 4.5 Carretera Durango-El Mezquital, Durango, Dgo. C.P. 34170, Mexico.
  • Daniel Sierra Universidad Juárez del Estado de Durango, Facultad de Veterinaria y Zootecnia, Mezquital km 11.5, Durango, Dgo., Mexico. https://orcid.org/0000-0003-2730-0858
  • Gerardo Pámanes CONAHCYT. Universidad Juárez del Estado de Durango, Instituto de Silvicultura e Industrias de la Madera, Del Guadiana 501, SAHR, C.P. 34104 Durango, Dgo., Mexico. https://orcid.org/0000-0002-5134-6306
Keywords: gas production kinetics, nutritional quality, ruminal fermentation

Abstract

It is a high priority to account for methane emissions from cattle grazing grasslands in order to evaluate the strategies for mitigating GHG emissions in livestock. The aim of this study was to evaluate in vitro ruminal methane production and nutritional content of the consumed diet by bovines grazing an open medium grassland in atypical dry and rainy periods in the semi-arid region of the state of Durango, Mexico. Four rumen fistulated bovines were subjected of an ad libitum graze under a repeated measure design. Chemical analysis showed that DM, OM, NDF and ADF increased in rainy period (p<0.05). Otherwise, CP, EE, phosphorus contains and IVDMD increased in dry period (p<0.05). Ruminal fermentation parameters as pH and volatile fatty acids as acetic, propionic and butyric, showed no changes among periods (p>0.05). However, ammonia increased in rainy period (p<0.05). Moreover, gas production kinetics only showed differences in lag phase (p<0.05); whereas, maximum gas production and production constant rate showed no changes among periods (p>0.05). Likewise, methane production showed no changes among both periods (p<0.05). As conclusion, it is observed that nutritional quality of the consumed diet by bovines grazing and open medium grasslands in dry and rainy periods presents acceptable protein values (8-10 %). In addition, phosphorus contents are higher than the minimum requirements for growing bovines. Furthermore, methane production was not affected by dry and rainy periods.

Downloads

Download data is not yet available.

References

Almaraz-Buendía, I., García, A. M., Sánchez-Santillán, P., Torres-Salado, N., Herrera-Pérez, J., Bottini-Luzardo, M. B., y Rojas-García, A. R. (2019). Análisis bromatológico y producción de gas in vitro de forrajes utilizados en el trópico seco mexicano. Archivos de zootecnia, 68(262): 260-266. https://doi.org/10.21071/az.v68i262.4145
ANKOM. (2023). Daisy II Incubator, Operator´s Manual. https://www.ankom.com/sites/default/files/document-files/D200_D200I_Manual_0.pdf?srsltid=AfmBOorriYFNLhHm4sKPDm_06XJ1KYlMjaZ-xOuKhTn_dloj_HN-s2lE
AOAC. (2019). Official Methods of Analysis. Association of Official Analytical Chemists International. 21th ed. Virginia, USA, 1997: 69-83. https://www.researchgate.net/publication/292783651_AOAC_2005
Carro Travieso, M. D., Evan, T. D., and González Cano, J. (2018). Emisiones de metano en los animales rumiantes: influencia de la dieta. Albéitar, 220: 32-35. https://www.portalveterinaria.com/pdfjs/web/viewer.php?file=%2Fupload%2Friviste%2FAlbeitar221_MR.pdf
CONAGUA “Comisión Nacional del Agua” (2023). Precipitación (mm) por Entidad Federativa y Nacional. México 2023: CONAGUA. https://smn.conagua.gob.mx/tools/DATA/Climatolog%C3%ADa/Pron%C3%B3stico%20clim%C3%A1tico/Temperatura%20y%20Lluvia/PREC/2023.pdf
Crespo, G., Rodríguez, I. y Lok, S. (2015). Contribución al estudio de la fertilidad del suelo y su relación con la producción de pastos y forrajes. Revista Cubana de Ciencia Agrícola 49 (2): 211-219. https://www.redalyc.org/articulo.oa?id=193039698011
Dong, L. F., Yang, X. Z., Gao, Y. H., Li, B. C., Wang, B., and Diao, Q. Y. (2021). Effects of dietary NDF∶ NFC ratio on growth performance, nutritive digestibility, ruminal fermentation characteristics and methane emissions of Holstein heifers. Acta Prataculturae Sinica, 30(2), 156.https://doi.org/10.3390/ani9100725
Elghandour M. M., Salem A. Z. M., Gonzalez-Roquillo M., Bórquez J. L., Gado H. M., Odongo N. E. and Peñuelas G. G. (2013). Effects of exogenous enzymes on in vitro gas production kinetics and ruminal fermentation of four fibrous feeds. Animal Feed Science and Technology, 179: 46-53. https://doi.org/10.1016/j.anifeedsci.2012.11.010
Enríquez-Quiroz J. F., Esqueda-Esquivel V. A. y Martínez-Mendez D. (2021). Rehabilitación de praderas degradadas en el trópico de México. Revista Mexicana de Ciencias Pecuarias; 12(3): 243-260. https://doi.org/10.22319/rmcp.v12s3.5876
Espinoza-Velasco B., Ramírez-Mella M. y Sánchez-Villareal A. (2018). Elucidando la relación entre la microbiota ruminal y la emisión de gases de efecto invernadero mediante la aplicación de la genómica. Agroproductividad, 11(2): 3-8. https://revista-agroproductividad.org/index.php/agroproductividad/article/view/111
France J., Dijkstra J., Dhanoa M. S., López S. and Bannink A. (2000). Estimating the extent of degradation of ruminant feeds from adescription of their gas production profiles observed in vitro: Derivation of models and other mathematical considerations. British Journal of Nutrition, 83: 143–50. https://doi.org/10.1017/S0007114500000180
Galyean M.L. (2010). Laboratory procedures in animal nutrition research. Department of Animal and Food Sciences. Texas Tech. University, Lubbock, TX, USA. https://www.depts.ttu.edu/agriculturalsciences/vetSciences/mgalyean/lab_man.pdf
González-Arreola Adolfo, Murillo-Ortiz Manuel, Pámanes-Carrasco Gerardo A., Reveles-Saucedo Fanny y Herrera-Torres Esperanza. (2019). Pricly pear cladodes. Journal Animal and Plants Science, 40(1):6544-6553. https://www.m.elewa.org/JAPS
Hackmann, T.J. and Firkins, J.L. (2015). Maximizing efficiency of rumen microbial protein production. Frontiers in Microbiology, 6: 465. https://doi.org/10.3389/fmicb.2015.00465
Holguín V.A., Cuchillo-Hilario M., Mazabel S. y Mora. Delgado J. (2020). Efecto de la mezcla ensilada de Pennisetum purpureum y Tithonia diversifolia sobre la fermentación ruminal in vitro y su emisión de metano en el sistema RUSITEC. Revista Mexicana de Ciencias Pecuarias, 11(1): 19-37. https://doi.org/10.22319/rmcp.v11i1.4740
INEGI “Instituto Nacional de Estadística y Geografía”. (2023) Aspectos geográficos. INEGI,https://www.inegi.org.mx/contenidos/app/areasgeograficas/resumen/resumen_10.pdf
Murillo, M., Reyes-Jáquez, D., Herrera-Torres, E., and Pámanes-Carrasco, G. A. (2020). Gas Production Technique as a Powerful Tool for the Evaluation of the Nutritional Quality of Feedstuffs in Ruminants’ Production. In O. P. Jenkins (Ed.), Nova Science Publishers. Advances in Animal Science and Zoology, 16:1-16. https://www.researchgate.net/publication/354077538_Gas_Production_Technique_as_a_Powerful_Tool_for_the_Evaluation_of_the_Nutritional_Quality_of_Feedstuffs_in_Ruminants'_Production
Nampoothiri, V.M.; Mohini, M.; Malla, B.A.; Mondal, G.; Pandita, S. (2018). Animal performance, and enteric methane, manure methane and nitrous oxide emissions from Murrah buffalo calves fed diets with different forage-to-concentrate ratios. Animal Production and Science, 60:780. https://doi.org/10.1016/j.aninu.2018.01.009
NRC “National Research Council”. (2010). Research at the Intersection of the Physical and Life Sciences. Washington, DC: The National Academies Press. https://.doi:10.17226/12809
Olivera-Castro Y., Mendez de Acevedo M., Arias-Avilés L. L., Pinheiro-Machado Filho L. C. y del Pozo-Rodríguez P. P. (2022). Rendimiento y calidad nutricional del pastizal de la finca Ressacada en Florianópolis-SC, Brasil. Pastos y Forrajes, 45(3): 1-7. https://www.redalyc.org/articulo.oa?id=269173684003
Palangi, V. (2019). Effects of Processing Legume Forages with Organic acids on In vitro gas production, rumen fermantation and ethan Production. Animal Science; Ataturk University: Yakutiye, Turkey, p. 83. https://doi.org.10.12681/jhvms.3
Ramos-Juárez, J. A., Martínez-Urbina, E., Izquierdo-Reyes, F., Aranda-Ibañez, E. M., Vargas-Villamil, L. M., Hernández-Sánchez, D., y Joaquín-Torres, B. M. (2021). Efecto de Suplementos Fermentados con Pollinaza sobre el consumo y degradación del pasto Cuba CT-115. Revista Fitotecnia Mexicana, 44(4-A): 773-773.https://doi.org/10.35196/rfm.2021.4-A.773
Rao, I., Peters, M., Castro, A., Schultze-Kra, R., White, D., Fisher, M., et al., (2015). Livestock Pluse sustainable intensification of foragebased agricultural systems to improve livelihoods and ecosystems services in the tropics. Topical Grasslands, 3(2):59–82. https://hdl.handle.net/10568/68840
Reyes-Estrada O., Murillo-Ortiz M., Herrera Torres E., Gurrola-Reyes N. y Carrete-Carreón F. O. (2014). Cambios estacionales en consumo, composición química y degradabilidad ruminal de la dieta seleccionada por novillos en pastoreo. Revista cubana de Ciencia Agrícola, 46(4): 375-380. http://www.scielo.org.mx/scielo.php
Rodríguez Tenorio D., Gutiérrez Luna R., Bañuelos Valenzuela C., Rochín Berumen F. y Ruiz Fernández E. (2019). Hábitos de comportamiento del ganado bovino pastoreando en un pastizal mediano abierto. Investigación Científica, 12(2): 1-6. https://revistas.uaz.edu.mx/index.php/investigacioncientifica/article/view/732
Romero Delgado G., Echeverría Rojas M., Trillo Zárate F., Hidalgo Lozano V., Aguirre Terrazas L., Robles Rodríguez R. y Núñez Delgado J. (2020). Efecto del faique (Acacia macranthak) sobre el valor nutricional del pasto guinea (Panicum maximun Jaq.) en un sistema silvopastoril. Revista de Investigación Veterinaria de Perú, 31(1): 1-16. http://dx.doi.org/10.15381/rivep.v31i1.17562
Sánchez Zubieta A., Savian J.V., de Souza Filho G., Osorio Wallau M., Marín Gómez A., Bindelle J., Franciscois Bonnet O.J., César de Faccio P. (2021). Does grazing management provide opportunities to mitigate methane emissions by ruminants in pastoral ecosystems?. Science of The Total Environment, 1(754): 142029. https://doi.org/10.1016/j.scitotenv.2020.142029
Sandoval-Pelcastre, A. A., Ramírez-Mella, M., Rodríguez-Ávila, N. L., and Candelaria-Martínez, B. (2020). Árboles y arbustos tropicales con potencial para disminuir la producción de en rumiantes. Tropical and Subtropical Agroecosystems, 23(33): 1-16.https://www.researchgate.net/publication/370509194_ARBOLES_Y_ARBUSTOS_TROPICALES_CON_POTENCIAL_PARA_DISMINUIR_LA_PRODUCCION_DE_METANO_EN_RUMIANTESetano
SIAP “Servicio de Información Agroalimentaria y Pesquera” (2023). Población ganadera nacional. SIAP, https://nube.siap.gob.mx/poblacion_ganadera/
SMN “Servició Metereologíaco Nacional”. (2024). Resúmenes mensuales de temperaturas y lluvia. Servicio Meteorológico Nacional. Comisión Nacional del Agua. https://smn.conagua.gob.mx/es/climatologia/temperaturas-y-lluvias/resumenes-mensuales-de-temperaturas-y-lluvias
Teodorou M.K, Williams B.A., Dhanoa M.S., McAllan A.B. and France J. (1994). A simple gas production method a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology, 48:185-197. https://.doi.org/10.1016/0377-8401(94)90171-6
Torres S. N., Sánchez S. P., Rojas G. A. R., Almaraz B. I., Herrera P. J., Reyes V. I., y Mayren M. F. J. (2019). Producción de gas in vitro y características fermentativas de consorcios bacterianos celulolíticos ruminales de búfala de agua (Bubalus bubalis) y vaca suiz-bu. Agrociencia, 53: 145-159. http://ri.uagro.mx/handle/uagro/1341
Van Soest, P.J., J.B. Robertson, B.A Lewis. (1991). Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition: carbohydrate methodology, metabolism and nutritional implications in dairy cattle. Journal of Dairy Science, 74:35-83.http://.doi.10.3168/jds.S0022-0302(91)78551-2
Zhang, L., Chung, J., Jiang, Q., Sun, R., Zhang, J., Zhong, Y. and Ren, N. (2017). Characteristics of rumen microorganisms involved in anaerobic degradation of cellulose at various pH values. RSC Advances, 7: 40303-40310. https://doi.org/10.1039/C7RA06588D
How to Cite
García, E., Herrera, E., Murillo, M., Jiménez, R., Sierra, D., & Pámanes, G. (1). Methane production and nutritional content from the diet consumed by grazing cattle. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 42(1), e254203. Retrieved from https://mail.produccioncientificaluz.org/index.php/agronomia/article/view/43141
Section
Animal Production