Phagocytosis rate in Acanthamoeba species from groundwater. Part 2.

  • Silvana Beatriz Pertuz Belloso Fundación Bchemokines Molecules and Therapies, Pachuca de Soto, Estado de Hidalgo, México. https://orcid.org/0000-0002-0663-2987
  • Miroslav Macek Universidad Nacional Autónoma de México, Estado de México, México.
  • Elisabeth Ramírez Flores Universidad Nacional Autónoma de México, Estado de México, México.
Keywords: Free-living-amoeba, Acanthamoeba, bacteria’s, cellular membrane, adherence, mathematical model, ecological impact

Abstract

The phagocytosis is a mechanism of take of solid particles by eukaryotic cells, playing a role in the ecology. The objective of this work was analyzed the phagocytosis of Acanthamoeba species from groundwater of Mezquital Valley (Hidalgo State, Mexico), and their biology impact. For this, a mathematics model was elaborate for evaluated rates of phagocytosis, vacuole forming, clearing of bacteria, adherence and digestion for Acanthamoeba species. The phagocytosis rate was ≥ 50 a 250 bac ame-1 h-1 both species; at the same time that the vacuole forming rate were ≥ 20 an 80 vac. ame-1 h-1. The clearing rates were 100.000 bac-1 mm2 cells-1 h-1 for Acanthamoeba griffini, until 1.200.000 bac-1 mm2 cells-1 h-1for Acanthamoeba castellanii. The adherence rate was ≥ 500.000 bac-1ame-1 h-1 mm2 by membrane superface. The phagocytosis process was regulated by the bacteria adherence rate on the amoebic superface, in positive correlation with the digestion rates. In conclusion the phagocytosis depended of Acanthamoeba species´s and cellular factors as vacuole forming and bacterial adherence on the membrane superface of amoeba. The ecological impact of Acanthamoeba is determined by the clearing rate of bacteria by amoeba. In this work was demonstrated the importance of phagocytosis and the role of free living amoebae in the regulation of bacteria in the environmental.

Downloads

Download data is not yet available.

Author Biographies

Silvana Beatriz Pertuz Belloso, Fundación Bchemokines Molecules and Therapies, Pachuca de Soto, Estado de Hidalgo, México.

Fundación Bchemokines Molecules and Therapies, Pachuca de Soto, Estado de Hidalgo, México.

Miroslav Macek, Universidad Nacional Autónoma de México, Estado de México, México.

Laboratorio de Microbiología Ambiental. Unidad Interdisciplinaria de Investigación en Ciencias de la Salud y Educación de la Facultad de Estudios Superiores de Iztacala. Universidad Nacional Autónoma de México, Estado de México, México.

Elisabeth Ramírez Flores, Universidad Nacional Autónoma de México, Estado de México, México.

Laboratorio de Microbiología Ambiental. Unidad Interdisciplinaria de Investigación en Ciencias de la Salud y Educación de la Facultad de Estudios Superiores de Iztacala. Universidad Nacional Autónoma de México, Estado de México, México.

References

AMACKER, N., Z. GAO, J. HU, ALC. JOUSSET, GA. KOWALCHUK y S. GEISEN. 2022. Protist feeding patterns and growth rate are related to their predatory impacts on soil bacterial communities. FEMS Microbiol Ecol. 98: 1-11. DOI: 10.1093/femsec/fiac057. https://pubmed.ncbi.nlm.nih.gov/35524686/.

AVERY, S.V., D. LLOYD y J. L. HARWOOD. 1995. Influence of plasma membrane fluidity on phagocytotic activity in Acanthamoeba castellanii. Biochem. Soc. Trans. 23: 409S. DOI: 10.1042/bst023409s. https://pubmed.ncbi.nlm.nih.gov/8566297/

BOTTONE, E. J., A. A. PERE, R. E. GORDON, M. N. QURESHI. 1994. Differential binding capacity and internalization of bacterial substrates as factors in growth rate of Acanthamoeba spp. J. Medical Microbiology. 40: 2 148-154. DOI: 10.1099/00222615- 40-2-148. https://pubmed.ncbi.nlm.nih.gov/8107064/

BOTTONE, E. J., R. M. MADAYAG, y M. N. QURESHI. 1992. Acanthamoeba keratitis: synergy between amebic and bacterial co-contaminants in contact lens care systems as a prelude to infection. Journal of clinical microbiology. 30: 2447-2450. DOI: 10.1128/jcm.30.9.2447-

BOWERS, B., T. E. OLSZEWSKI y J. HYDE. 1981. Morphometric analysis of volumes and surface areas in membrane compartments during endocytosis in Acanthamoeba. J. Cell. Biol. 88: 509-515. DOI: 10.1083/jcb.88.3.509. https://pubmed.ncbi.nlm.nih. Gov/7217201/

BOWERS, B. y T. E. OLSZEWSKI. 1983. Acanthamoeba discriminates internally between digestible and indigestible particles. J. Cell. Biol. 97: 317-322. DOI: 10.1083/jcb.97.2.317. https://pubmed.ncbi.nlm.nih.gov/6350315/

BOZUE, J. A. y W. JOHNSON. 1996. Interaction of Legionella pneumophila with Acanthamoeba castellanii: uptake by coiling phagocytosis and inhibition of phagosome-lysosome fusion. Infect Immun. 64: 668-673. DOI: 10.1128/iai.64.2.668- 673.1996. https://pubmed.ncbi.nlm.nih.gov/8550225/

FINLAY, B. J. 2004. Protist taxonomy: an ecological perspective. Philos Trans R Soc Lond B Biol Sci. 359: 599-610. DOI: 10.1098/rstb.2003.1450. https://pmc.ncbi. nlm.nih.gov/articles/PMC1693346/

GUILLONNEAU, R., C. BARAQUET y M. MOLMERET. 2020. Marine bacteria display different escape mechanisms when facing their protozoan predators. Microorganisms. 8: 1-25. https://doi.org/10.3390/microorganisms8121982

INGLIS, T. J. J., P. RIGBY, T. A. ROBERTSON, N. S. DUTTON, M. HERDERSON y B. J. CHANG. 2000. Interaction between Burkholderia pseudomallei y Acanthamoeba species results in coiling phagocytosis, endamebic bacterial survival, and escape. Infection and Immunity. 68: 1681-1686. DOI: 10.1128/IAI.68.3.1681-1686.2000.
https://pubmed.ncbi.nlm.nih.gov/10678988/

JAMY M., C. BIWER, D. VAULOT, A. OBIOL, H. JING, S. PEURA, R. MASSANA y F. BURKI. 2022. Global patterns and rates of habitat transitions across the eukaryotic tree of life. Nat Ecol Evol. 6: 1458-1470. DOI: 10.1038/s41559-022-01838-4. https://pubmed.ncbi.nlm.nih.gov/35927316/

KONG, H. H. 2009. Molecular phylogeny of Acanthamoeba. Korean J. Parasitol. 47: 21-8. DOI: 10.3347/kjp.2009.47.S.S21. https://pmc.ncbi.nlm.nih.gov/articles/ PMC2769217/

KORN, E. D. y R. A. WIESMAN. 1967. Phagocytosis of latex beads by Acanthamoeba. II. Electron Microscopic study of the initial events. The J. Cell Biology. 34: 219-227. https://pmc.ncbi.nlm.nih.gov/articles/PMC2107219/

NASHER, F. y B, W. WREN. 2024. Unravelling mechanisms of bacterial recognition by Acanthamoeba: insights into microbial ecology and immune responses. Front Microbiol. 15: 1-10. DOI: 10.3389/fmicb.2024.1405133. https://pubmed.ncbi. nlm.nih.gov/39247694/

OATES, P. J. y O. TOUSTER. 1976. In vitro fusion of Acanthamoeba phagolysosomes. I. Demonstration and quantitation of vacuole fusion in Acanthamoeba homogenates. The Journal of Cell Biology 9: 319-338. DOI: 10.1083/jcb.68.2.319. https://pubmed.ncbi.nlm.nih.gov/1245550/

ORINGIN PRO. 2022. Windows. Northampton, USA: Origin Lab Corporation. PERTUZ B. S. B., D. MATUZ M., E. CAMPOY, M. MACEK y E. RAMÍREZ F. 2021. Tasa de fagocitosis en las especies de Acanthamoeba provenientes de aguas subterráneas. Parte I. Bol. Centro Invest. Biol. 55:1-28. DOI: https://doi.org/10.
5281/zenodo.5027538.

PRESCOTT, L. M., J. P. HARLEY y D. A. KLEIN. 2002. Microbiology. Fifth edition. MCGraw-Hill Higher Education. 1222p.

ROGERSON, A., F. HANNAH y G. GOTHE. 1996. The grazing potential of some unusual marine benthic amoebae feeding on bacteria. European Journal of Protistology 32: 271-279. https://doi.org/10.1016/S0932-4739(96)80026-5.

RØNN, R., A. E. MCCAIG, B. S. GRIFFITHS y J. I. PROSSER. 2002. Impact of protozoan grazing on bacterial community structure in soil microcosms. Applied and environmental microbiology. 68: 6094-6105. PMID: 12450833. https://pmc.ncbi. nlm.nih.gov/articles/PMC134433/

SHAHEEN, M. y N. J. ASHBOLT. 2021. Differential bacterial predation by free- living amoebae may result in blooms of Legionella in drinking water systems. Microorganisms 9: 1-25. DOI: 10.3390/microorganisms9010174.

SINGER, D., C. V. W. SEPPEY, G. LENTENDU, M. DUNTHORN, D. BASS, L. BELBAHRI, Q. BLANDENIER, D. DEBROAS, G. A. DE GROOT, C. DE VARGAS, I. DOMAIZON, C. I. DUCKERT, IZAGUIRRE, I. KOENIG, G. MATALONI, M. R.
SCHIAFFINO, E. A. D. MITCHELL y S. GEISEN, E. 2021. Lara. Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems. Environ Int. 46: 106262. DOI: 10.1128/msystems.00316-22. https://pmc.ncbi.nlm.nih.gov/articles/ PMC9426515/

STEWART, J. R. y R. A. WEISMAN. 1972. Exocytosis of latex beads during. The encystment of Acanthamoeba. The Cell Biology. 52: 117-130.DOI:10.1083/jcb.52.1.117. https://pmc.ncbi.nlm.nih.gov/articles/PMC2108685/

TOLLIS, S., A. E. DART, G. TZIRCOTIS y R. G. ENDRES. 2010. The zipper mechanism in phagocytosis: energetic requirements and variability in phagocytic cup shape. BMC Systems Biology 4: 1-17. DOI: 10.1186/1752-0509-4-149. https:// pubmed.ncbi.nlm.nih.gov/21059234/

WEEKERS, P. H., P. L. BODELIER, J. P. WIJEN y G. D. VOGELS. 1993. Effects of Grazing by the Free-Living Soil Amoebae Acanthamoeba castellanii, Acanthamoeba polyphaga, and Hartmannella vermiformis on Various Bacteria. Appl. Environ. Microbiol. 59: 2317-9. PMID: 16349000. https://pmc.ncbi.nlm.nih.gov/ articles/PMC182275/

WEISMAN, R. A. y E. D. KORN. 1967. Phagocytosis of latex beads by Acanthamoeba. I. Biochemical properties. Biochemistry. 6: 485-497.

WRIGHT, S. J. L., K. REDHEAD y H. MAUDSLEY. 1981. Acanthamoeba castellanii, a predator of cyanobacteria. J. Gen. Microbiol. 125: 293-300.
Published
2024-12-30
How to Cite
Pertuz Belloso, S. B., Macek, M., & Ramírez Flores, E. (2024). Phagocytosis rate in Acanthamoeba species from groundwater. Part 2. Boletín Del Centro De Investigaciones Biológicas, 58(2), 201-221. https://doi.org/10.5281/zenodo.14574698