Evaluación de los niveles de adropina en el tejido renal después del tratamiento con Metotrexato en ratas: un estudio experimental prospectivo
Resumen
En este estudio, el objetivo fue investigar los niveles de adropina en los tejidos renales después de la administración de MTX para identificar cambios potenciales después de la administración de agentes con potencial antioxidante/antiinflamatorio. En este estudio se utilizaron 24 ratas adultas, ratas Wistar albinas macho, y se dividieron aleatoriamente en cuatro grupos. Estas ratas no recibieron ningún tratamiento durante los 14 días (d) del experimento. NAC: A estas ratas se les administró 100 mg·kg-1·día-1 de N–acetilcisteína (NAC) por vía intraperitoneal (i.p.) durante 14 d. MTX: Se administró una dosis única de 20 mg·kg-1 de MTX i.p. al inicio del estudio. MTX+ NAC: Se administró una dosis única de 20 mg·kg-1 de MTX i.p. al comienzo del estudio, y las ratas recibieron 100 mg·kg-1·día-1 de NAC i.p. durante 14 d. Se encontró que los niveles de antioxidantes totales y de adropina sérica eran los más bajos en el grupo de MTX, mientras que los niveles de oxidantes fueron significativamente más bajos en el grupo de MTX que en el grupo de MTX+NAC (P<0,001). La positividad de TUNEL fue similar entre los grupos y no se observaron diferencias significativas. Se considera que estos hallazgos han arrojado luz sobre el papel de adropin en el desarrollo de insuficiencia renal tras la administración de MTX.
Descargas
Citas
Onopiuk A, Tokarzewicz A, Gorodkiewicz E. Cystatin C: a kidney function biomarker. Adv. Clin. Chem. [Internet]. 2015; 68:57–69. doi: https://doi.org/9hc
Paueksakon P, Fogo AB. Drug–induced nephropathies. Histopathol. [Internet]. 2017; 70(1):94–108. doi: https://doi.org/mb9h
Abd El–Twab SM, Hozayen WG, Hussein OE, Mahmoud AM. 18β–Glycyrrhetinic acid protects against methotrexate–induced kidney injury by up–regulating the Nrf2/ARE/HO–1 pathway and endogenous antioxidants. Ren. Fail. [Internet]. 2016; 38(9):1516–1527. doi: https://doi.org/gr8n6z
Kozub P, Simaljakova M. Systemic therapy of psoriasis: methotrexate. Bratisl Lek Listy. [Internet]. 2011; 112(7):390–394. Cited in: PubMed; PMID 21744734.
Zhu H, Deng FY, Mo XB, Qiu YH, Lei SF. Pharmacogenetics and pharmacogenomics for rheumatoid arthritis responsiveness to methotrexate treatment: the 2013 update. Pharmacogen. [Internet]. 2014; 15(4):551–566. doi: https://doi.org/f527cz
Cetinkaya A, Bulbuloglu E, Kurutas EB, Kantarceken B. N–acetylcysteine ameliorates methotrexate–induced oxidative liver damage in rats. Med. Sci. Monit. [Internet]. 2006 [cited 25 June 2023]; 12(8):BR274–278. Available in: https://bit.ly/3tQVZWH.
Howard SC, McCormick J, Pui CH, Buddington RK, Harvey RD. Preventing and Managing Toxicities of High–Dose Methotrexate. Oncol. [Internet]. 2016; 21(12):1471–1482. doi: https://doi.org/f9jsmp
Mahmoud AM, Hozayen WG, Ramadan SM. Berberine ameliorates methotrexate–induced liver injury by activating Nrf2/HO–1 pathway and PPARγ, and suppressing oxidative stress and apoptosis in rats. Biomed. Pharmacother. [Internet]. 2017; 94:280–291. doi: https://doi.org/gcpvm9
Kilic S, Emre S, Metin A, Isikoglu S, Erel O. Effect of the systemic use of methotrexate on the oxidative stress and paraoxonase enzyme in psoriasis patients. Arch. Dermatol. Res. [Internet]. 2013; 305(6):495–500. doi: https://doi.org/f459cj
Herrera B, Fernández M, Alvarez AM, Roncero C, Benito M, Gil J, Fabregat I. Activation of caspases occurs downstream from radical oxygen species production, Bcl–xL down–regulation, and early cytochrome C release in apoptosis induced by transforming growth factor beta in rat fetal hepatocytes. Hepatol. [Internet]. 2001; 34(3):548–556. doi: https://doi.org/bjsmbt
El–Gowilly SM, Helmy MM, El–Gowelli HM. Pioglitazone ameliorates methotrexate–induced renal endothelial dysfunction via amending detrimental changes in some antioxidant parameters, systemic cytokines and Fas production. Vascul. Pharmacol. [Internet]. 2015; 74:139–150. doi: https://doi.org/f73vg7
Lovren F, Pan Y, Quan A, Singh KK, Shukla PC, Gupta M, Al–Omran M, Teoh H, Verma S. Adropin is a novel regulator of endothelial function. Circulat. [Internet]. 2010; 122(Supl. 11):S185–S192. doi: https://doi.org/fnqr5s
Kumar KG, Trevaskis JL, Lam DD, Sutton GM, Koza RA, Chouljenko VN, Kousoulas KG, Rogers PM, Kesterson RA, Thearle M, Ferrante AW Jr, Mynatt RL, Burris TP, Dong JZ, Halem HA, Culler MD, Heisler LK, Stephens JM, Butler AA. Identification of adropin as a secreted factor linking dietary macronutrient intake with energy homeostasis and lipid metabolism. Cell Metab. [Internet]. 2008; 8(6):468–481. doi: https://doi.org/fjjq6d.
Aydin S, Kuloglu T, Aydin S, Eren MN, Yilmaz M, Kalayci M, Sahin I, Kocaman N, Citil C, Kendir Y. Expression of adropin in rat brain, cerebellum, kidneys, heart, liver, and pancreas in streptozotocin–induced diabetes. Mol. Cell Biochem. [Internet]. 2013; 380(1–2):73–81. doi: https://doi.org/f488sm
Topuz M, Celik A, Aslantas T, Demir AK, Aydin S, Aydin S. Plasma adropin levels predict endothelial dysfunction like flow–mediated dilatation in patients with type 2 diabetes mellitus. J. Investig. Med. [Internet]. 2013; 61(8):1161–1164. doi: https://doi.org/f5qkrk
Yu HY, Zhao P, Wu MC, Liu J, Yin W. Serum adropin levels are decreased in patients with acute myocardial infarction. Regul. Pept. [Internet]. 2014; 190–191:46–9. doi: https://doi.org/f58vcp
Cermik H, Taslipinar MY, Aydin I, Agilli M, Aydin FN, Ucar F, Alp BF, Toygar M, Ozkan E, Altayli E, Cayci T. The relationship between N–acetylcysteine, hyperbaric oxygen, and inflammation in a rat model of acetaminophen–induced nephrotoxicity. Inflammation. [Internet]. 2013; 36(5):1145–1152. doi: https://doi.org/f5ck4c
Asci H, Ozmen O, Ellidag HY, Aydin B, Bas E, Yilmaz N. The impact of gallic acid on the methotrexate–induced kidney damage in rats. J. Food Drug Anal. [Internet]. 2017; 25(4):890–897. doi: https://doi.org/mb9p
Demircan S, Onalan E, Kuloğlu T, Aydın S, Yalçın MH, Gözel N, Dönder E. Effects of vitamin D on apoptosis and betatrophin in the kidney tissue of experimental diabetic rats. Acta Biomed. [Internet]. 2020; 91(4):e2020089. doi: https://doi.org/mb9q
Kuloglu T, Aydin S. Immunohistochemical expressions of adropin and ınducible nitric oxide synthase in renal tissues of rats with streptozotocin–induced experimental diabetes. Biotech. Histochem. [Internet]. 2014; 89(2):104–110. doi: https://doi.org/gm2qdk
Heidari R, Ahmadi A, Mohammadi H, Ommati MM, Azarpira N, Niknahad H. Mitochondrial dysfunction and oxidative stress are involved in the mechanism of methotrexate–induced renal injury and electrolytes imbalance. Biomed. Pharmacother. [Internet]. 2018; 107:834–840. doi: https://doi.org/gfcfxw
Kolli VK, Abraham P, Isaac B, Selvakumar D. Neutrophil infiltration and oxidative stress may play a critical role in methotrexate–induced renal damage. Chemother.. [Internet]. 2009; 55(2):83–90. doi: https://doi.org/c7xkhg
Dodd S, Dean O, Copolov DL, Malhi GS, Berk M. N–acetylcysteine for antioxidant therapy: pharmacology and clinical utility. Expert Opin. Biol. Ther. [Internet]. 2008; 8(12):1955–1962. doi: https://doi.org/dbkck6
Cetinkaya A, Kurutas EB, Bulbuloglu E, Kantarceken B. The effects of N–acetylcysteine on methotrexate–induced oxidative renal damage in rats. Nephrol. Dial Transplant. [Internet]. 2007; 22(1):284–285. doi: https://doi.org/dg445h
Mahmoud AM, Germoush MO, Al–Anazi KM, Mahmoud AH, Farah MA, Allam AA. Commiphora molmol protects against methotrexate–induced nephrotoxicity by up–regulating Nrf2/ARE/HO–1 signaling. Biomed. Pharmacother. [Internet]. 2018; 106:499–509. doi: https://doi.org/gd6nvm
Chen T, Wang Q, Cui J, Yang W, Shi Q, Hua Z, Ji J, Shen P. Induction of apoptosis in mouse liver by microcystin–LR: a combined transcriptomic, proteomic, and simulation strategy. Mol. Cell Proteomics. [Internet]. 2005; 4(7):958–974. doi: https://doi.org/dvwrdt
McClain DE, Kalinich JF, Ramakrishnan N. Trolox inhibits apoptosis in irradiated MOLT–4 lymphocytes. FASEB J. [Internet]. 1995; 9(13):1345–1354. doi: https://doi.org/mb9t
Yang C, DeMars KM, Hawkins KE, Candelario–Jalil E. Adropin reduces paracellular permeability of rat brain endothelial cells exposed to ischemia–like conditions. Peptides. [Internet]. 2016; 81:29–37. doi: https://doi.org/f8qf82
Yang C, DeMars KM, Candelario–Jalil E. Age–Dependent Decrease in Adropin is Associated with Reduced Levels of Endothelial Nitric Oxide Synthase and Increased Oxidative Stress in the Rat Brain. Aging Dis. [Internet]. 2018; 9(2):322–330 doi: https://doi.org/mb9v
Chen X, Xue H, Fang W, Chen K, Chen S, Yang W, Shen T, Chen X, Zhang P, Ling W. Adropin protects against liver injury in nonalcoholic steatohepatitis via the Nrf2 mediated antioxidant capacity. Redox Biol. [Internet]. 2019; 21:101068. doi: https://doi.org/mb9w
Derechos de autor 2024 Karakeci Ahmet, Kuloglu Tuncay, Acisu Tutku Can, Keles Ahmet, Ozan Tunc, Vural Osman, Orhan Irfan, Sabaz Karakeci Emel
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.