¿Puede la Fasciola hepatica modular la gravedad del COVID–19?
Resumen
Perú es considerada una zona hiperendémica de fasciolosis con una prevalencia entre 6,7 a 47,7% (promedio 24,4%) en humanos. En esta zona, la eficacia del Triclabendazol en bovinos es solo del 25,2%, por ello la presencia de cepas resistentes está ampliamente distribuida. El problema se acentúa por ser una enfermedad zoonótica. Además, el Triclabendazol es el único fármaco eficaz contra las distintas formas del parásito. Las catepsinas L y B están involucradas en la migración, nutrición, reproducción y evasión de la respuesta inmune y supervivencia de Fasciola hepatica. Al analizar el proceso en el que el virus SARS–CoV–2 ingresa a la célula, se requiere la presencia de proteasa de serina celular de transmembrana 2 (TMPRSS2) y catepsina L/B (CTSL); donde TMPRSS2 activa la glicoproteína S viral para fusionar la célula con la membrana viral, mientras que la glicoproteína S viral es activada por CTSL, lo que permite la fusión de la membrana endosómica y viral, que el virus infecte a la célula hospedadora es preocupante para estimar el posible efecto que podría generar en poblaciones infectadas con F. hepatica debido a que se necesita una coinfección existente, como resultado del aumento sistémico de las catepsinas L/B secretadas por este parásito y la supervivencia dentro del hospedador definitivo, posiblemente estas poblaciones se vuelvan más susceptibles a la infección viral por coinfección con el parásito; haciendo un llamado a la comunidad científica para identificar alternativas de control de parásitos y no tener un problema asociado a corto plazo.
Descargas
Citas
Gluchowska K, Dzieci T, Atkowski S, Edzikowska A, Zawistowska–Deniziak A, Młocicki D, Sebastiani M, Stefá W. Pandemic–Risk Factors or Protective Agents? J. Clin. Med. [Internet]. 2021; 10(11):2533. doi: https://doi.org/mknx
Muñoz–Zambrano ME, Placencia–Medina M, Del Pozo–Muñoz JA, Sevilla–Andrade C, Huiza–Franco A. Serological diagnosis of Fasciola hepatica infection: a systematic review. Rev. Gastroenterol. Peru. [Internet]. 2020; 40(2):155–161. doi: https://doi.org/dm8c
Peixoto R, Silva LMR, López–Osório S, Zhou E., Gärtner U, Conejeros I, Taubert A, Hermosilla C. Fasciola hepatica induces weak NETosis and low production of intra– and extracellular ROS in exposed bovine polymorphonuclear neutrophils. Develop. Compar. Immunol. [Internet]. 2021; 114:103787. doi: https://doi.org/gqdtfj
Saijuntha W, Tantrawatpan C, Agatsuma T, Wang C, Intapan PM, Maleewong W, Petney TN. Revealing genetic hybridization and DNA recombination of Fasciola hepatica and Fasciola gigantica in nuclear introns of the hybrid Fasciola fl ukes. Molec. Biochem. Parasitol. [Internet]. 2018; 223:31–36. doi: https://doi.org/gd3f6f
Pritchard GC, Forbes AB, Williams DJ, Salimi–Bejestani MR, Daniel RG. Emergence of fasciolosis in cattle in East Anglia. Vet. Rec. [Internet]. 2005;157(19): 578–82. doi: https://doi.org/mknz
Miranda–Miranda E, Cossio–Bayugar R, Aguilar–Díaz H, Narváez–Padilla V, Sachman–Ruíz B, Reynaud E. Transcriptome assembly dataset of anthelmintic response in Fasciola hepatica. Data Brief. [Internet]. 2021; 35:106808. doi: https://doi.org/hvzb
Pinilla JC, Florez AA, Orlandoni G, Tobón JC, Ortíz D. Current status of prevalence and risk factors associated with liver fluke Fasciola hepatica in cattle raised in different altitudinal regions of Colombia. Vet. Parasitol: Regional Studies Reports. [Internet]. 2020; 22:100487. doi: https://doi.org/hvzp
Beesley NJ, Attree E, Vázquez–Prieto S, Vilas R, Paniagua E, Ubeira FM, Jensen O, Pruzzo C, Álvarez JD, Malandrini JB, Solana H, Hodgkinson JE. Evidence of population structuring following population genetic analyses of Fasciola hepatica from Argentina. Intern. J. Parasitol [Internet]. 2021; 51(6):471–480. doi: https://doi.org/htj6
Calvani NED, Ichikawa–Seki M, Bush RD, Khounsy S, Šlapeta J. Which species is in the faeces at a time of global livestock movements: single nucleotide polymorphism genotyping assays for the differentiation of Fasciola spp. Intern. J. Parasitol. [Internet]. 2020; 50(2):91–101. doi: https://doi.org/htj9
Addy F, Gyan K, Arhin E, Wassermann M. Prevalence of bovine fasciolosis from the Bolgatanga abattoir, Ghana. Scientific. African. [Internet]. 2020; 8:e00469. doi: https://doi.org/htc6
Mas–Coma S. Epidemiology of fascioliasis in human endemic areas. J. Helminthol. [Internet]. 2005; 79:207–216. doi: https://doi.org/b43x3r
Walsh TR, Ainsworth S, Armstrong S, Hodgkinson J, Williams D. Differences in the antibody response to adult Fasciola hepatica excretory/secretory products in experimentally and naturally infected cattle and sheep. Vet. Parasitol. [Internet]. 2021; 289:109321. doi: https://doi.org/gtkznx
Ramírez JD, Sordillo EM, Gotuzzo E, Zavaleta C, Caplivski D, Navarro JC, Crainey JL, Luz SLB, Delgado LA, Schaub R, Rousseau C, Herrera G, Oliveira–Miranda MA, Quispe–Vargas MT, Hotez PJ, Mondolfi AP. Sars–cov–2 in the amazon region: A harbinger of doom for amerindians. PLoS Neglect. Trop. Dis. [Internet]. 2020; 14(10):1–10. doi: https://doi.org/gm5wmt
Rinaldi L, Gonzalez S, Guerrero J, Aguilera LC, Musella V, Genchi C, Cringoli G. A One–Health integrated approach to control fascioliasis in the Cajamarca valley of Peru. Geospat. Health. [Internet]. 2012; 6(3):67–73. doi: https://doi.org/mkn2
Valero MA, Perez–Crespo I, Khoubbane M, Artigas P, Panova M, Ortiz P, Maco V, Espinoza JR, Mas–Coma S. Fasciola hepatica phenotypic characterization in Andean human endemic areas: valley versus altiplanic patterns analysed in liver flukes from sheep from Cajamarca and Mantaro, Perú. Infect. Genet. Evol. [Internet]. 2012; 12(2):403–410. doi: https://doi.org/fzv728
González LC, Esteban JG, Bargues MD, Valero MA, Ortiz P, Náquira C, Mas–Coma S. Hyperendemic human fascioliasis in Andean valleys: an altitudinal transect analysis in children of Cajamarca province, Peru. Acta Trop. [Internet]. 2011;120(1–2):119–129. doi: https://doi.org/fsjsqr
Rodríguez–Ulloa C, Rivera–Jacinto M, Del Valle–Mendoza J, Cerna C, Hoban C, Chilón S. Ortiz P. Risk factors for human fascioliasis in schoolchildren in Baños del Inca, Cajamarca, Perú. Trans. R Soc. Trop. Med. Hyg. [Internet]. 2018; 112(5):216–222. doi: https://doi.org/gnvc2v
Ortiz P, Scarcella S, Cerna C, Rosales C, Cabrera M, Guzmán M, Lamenza P, Solana H. Resistance of Fasciola hepatica against Triclabendazole in cattle in Cajamarca (Perú): a clinical trial and an in vivo efficacy test in sheep. Vet. Parasitol. [Internet]. 2013; 195(1–2):118–121. doi: https://doi.org/f437bh
Donnelly S, O’Neill SM, Sekiya M, Mulcahy G, Dalton JP. Thioredoxin peroxidase secreted by Fasciola hepatica induces the alternative activation of macrophages. Infect. Immun. [Internet]. 2005; 73:166–173. doi: https://doi.org/dtvp2j
Dowling DJ, Hamilton CM, Donnelly S, La Course J, Brophy PM, Dalton J. Major secretory antigens of the helminth Fasciola hepatica activate a suppressive dendritic cell phenotype that attenuates Th17 cells but fails to activate Th2 immune responses. Infect. Immun. [Internet]. 2010; 78:793–801. doi: https://doi.org/c5ccsn
O’Neill SM, Brady MT, Callanan JJ, Mulcahy G, Joyce P, Mills KHG, Dalton JP. Fasciola hepatica Infection Downregulates Th1 Responses in Mice. Parasite Immunol. [Internet]. 2000; 22(3):147–155. doi: https://doi.org/b2mqch
Tort J, Brindley PJ, Knox D, Wolfe KH, Dalton JP. Proteinases and Associated Genes of Parasitic Helminths. Adv. Parasitol. [Internet]. 1999; 43:161–266. doi: https://doi.org/b3mk8k
Sajid M, McKerrow JH. Cysteine Proteases of Parasitic Organisms. Mol. Biochem. Parasitol. [Internet]. 2002; 120(1):1–21. doi: https://doi.org/frqdnq
Robinson MW, Dalton JP, Donnelly S. Helminth Pathogen Cathepsin Proteases: It's a Family Affair. Trends Biochem. Sci. [Internet]. 2008; 33(12):601–608. doi: https://doi.org/fqrqnr
Berasain P, Carmona C, Frangione B, Dalton JP, Goñi F. Fasciola hepatica: Parasite–Secreted Proteinases Degrade All Human IgG Subclasses: Determination of the Specific Cleavage Sites and Identification of the Immunoglobulin Fragments Produced. Exp. Parasitol. [Internet]. 2000; 94(2): 99–110. doi: https://doi.org/dfjdq8
Smith AM, Dowd AJ, Heffernan M, Robertson CD, Dalton JP. Fasciola hepatica: A Secreted Cathepsin L–like Proteinase Cleaves Host Immunoglobulin. Intern. J. Parasitol. [Internet]. 1993; 23(8):977–983. doi: https://doi.org/dzj8ff
Hays R, Pierce D, Giacomin P, Loukas A, Bourke P, McDermott R. Helminth coinfection and covid–19: An alternate hypothesis. PLoS Neglect. Trop. Dis. [Internet]. 2020; 14(8):1–3. doi: https://doi.org/gg9vtw
Abdoli A. Helminths and COVID–19 Co–Infections: A Neglected Critical Challenge. ACS Pharmacol. Translat. Sci. [Internet]. 2020; 3(5):1039–1041. doi: https://doi.org/gmzz4n
Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC, Zhang YZ. A new coronavirus associated with human respiratory disease in China. Nature. [Internet]. 2020; 579:265–269. doi: https://doi.org/dk2w
Mittal A, Manjunath K, Ranjan RK, Kaushik S, Kumar S, Verma V. COVID–19 pandemic: Insights into structure, function, and hACE2 receptor recognition by SARS–CoV–2. PLoS Pathog. [Internet]. 2020; 16(8):e1008762. doi: https://doi.org/ghtr89
Zhong NS, Zheng BJ, Li YM, Poon LLM, Xie ZH, Chan KH, Li PH, Tan SY. Chang, Q, Xie JP. Epidemiology and cause of severe acute respiratory syndrome (SARS) in 304 Guangdong, People’s Republic of China. Lancet. [Internet]. 2003; 362(9393):1353–1358. doi: https://doi.org/fhgzs9
Zaki AM, Van–Boheemen S, Bestebroer TM, Osterhaus A, Fouchier R. Isolation of a Novel Coronavirus From a Man With Pneumonia in Saudi Arabia. N Engl. J. Med. [Internet]. 2012; 367(19):1814–1820. doi: https://doi.org/f4czx5
Chacin–Bonilla L, Chacón–Fonseca N, Rodriguez–Morales AJ. Emerging issues in COVID–19 vaccination in tropical areas: Impact of the immune response against helminths in endemic areas. Travel Med. Infect. Dis. [Internet]. 2021; 42: 2–4. doi: https://doi.org/gnvj3x
Hoffmann M. SARS–CoV–2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhib. Cell. [Internet]. 2020; 181(2):271–280. doi: https://doi.org/ggnq74
Yan R. Structural Basis for the Recognition of SARS–CoV–2 by Full–Length Human ACE2. Sci. [Internet]. 2020; 367(6485):1444–1448. doi: https://doi.org/ggpxc8
Wrapp D. Cryo–EM structure of the 2019–nCoV spike in the prefusion conformation. Sci. [Internet]. 2020; 367 (6483):1260–1263. doi: https://doi.org/ggmtk2
Bittmann S, Weissenstein A, Villalon G, Moschuring–Alieva E, Luchter E. Simultaneous Treatment of COVID–19 With Serine Protease Inhibitor Camostat and/or Cathepsin L Inhibitor. J. Clin. Med. Res. [Internet]. 2020; 12(5):320–322. doi: https://doi.org/gjvhjr
Smieszek SP, Przychodzen BP, Polymeropoulos MiH. Amantadine Disrupts Lysosomal Gene Expression: A Hypothesis for COVID 19 Treatment. Intern. J. Antimicrob. Agents. [Internet]. 2020; 55(6):106004. doi: https://doi.org/ggv28s
Huang Y, Yang C, Xu X Feng, Xu W, Liu S. Wen. Structural and functional properties of SARS–CoV–2 spike protein: potential antivirus drug development for COVID–19. Acta Pharmacol. Sinica. [Internet]. 2020; 41(9):1141–1149. doi: https://doi.org/ghk6wr
Monserrat J, Gómez AM, Oliva R. Papel del sistema inmune en la infección por el SARS–CoV–2: inmunopatología de la COVID–19. Med. [Internet]. 2021; 13(33):1917–1931. doi: https://doi.org/mkn4
Chaolin H, Yeming W, Xingwang L, Lili R. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. [Internet]. 2020; 395 (10223):497–506. doi: https://doi.org/ggjfnn
De León J, Pareja A, Aguilar P, Enriquez Y, Quiroz C, Valencia E. SARS–CoV–2 y sistema inmune: una batalla de titanes. Horizonte Med. [Internet]. 2020; 20(2):e1209. doi: https://doi.org/mkn5
Bradbury RS, Piedrafita D, Greenhill A, Mahanty S. Will helminth co–infection modulate COVID–19 severity in endemic regions? Nature Rev. Immunol. [Internet]. 2020; 20(6):342. doi: https://doi.org/ggtzdp
Harris NL, Loke P. Recent Advances in Type–2–Cell–Mediated Immunity: Insights from Helminth Infection. Immunity. [Internet]. 2017; 47(6):1024–1036. doi: https://doi.org/gcr6fp
Caffrey CR, Goupil L, Rebello KM, Dalton JP, Smith D. Cysteine proteases as digestive enzymes in parasitic helminths. PLoS Negl. Trop. Dis. [Internet]. 2018; 12(8):5840. doi: https://doi.org/gd5cp8
Mabbott NA. The Influence of Parasite Infections on Host Immunity to Co–infection With Other Pathogens. Front. Immunol. [Internet]. 2018; 9:2579. doi: https://doi.org/gfqc4f
Siles–Lucas M, González–Miguel J, Geller R, Sanjuan R, Pérez–Arévalo J, Martínez–Moreno Á. Potential Influence of Helminth Molecules on COVID–19 Pathol. Trends Parasitol. [Internet]. 2021; 37(1):11–14. https://doi.org/gmcq9d
Ministerio de la Salud. Boletín Epidemiológico del Perú. [Internet]. 2020 [Consultado 22 Jul 2023]; 31 p. Disponible en: https://goo.su/KVf2D7
Luis Raul Rosas–Hostos Infantes LR, Paredes–Yataco GA. Prevalencia global de fasciolosis humana desde 1985 al 2021. [tesis de grado en Internet]. Perú: Universidad Peruana Cayetano Heredia. 2022 [Consultado 12 Jul 2023]. 53 p. Disponible en: https://goo.su/5Tu2uy
Derechos de autor 2024 Marco Cabrera–González, Carlos Quilcate–Pairazamán, Medali Cueva–Rodríguez
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.