Sperm chromatin stability and their relationship with fertilization rate in Sheep of the Junín race
Abstract
The objective of this research was to evaluate the effect of sperm on chromatin stability and its relationship with the membrane integrity structural – physiological and the rate of fertilization of female sheep. Ejaculates of sperm (2 × 109 sperm·mL-1) with 70% of motility were collected using an artificial vagina (n=5, 2 years old. For this, each ram was served with fifteen female sheep (n=75), generating thus five different Groups (A, B, C, D, and E). A control Group also was considered. Sperm nuclear chromatin stability (NCS) was evaluated using the Borate Buffer (BB), Sodium Dodecyl Sulfate (SDS), and the mixture of Ethylenediaminetetraacetic acid (EDTA) + SDS. The fertilization rate was evaluated after 16-18 hours post sperm injection. Sperm concentration showed a significant difference (P<0.05) between Groups. In Contrast, seminal volume, and sperm motility do not show a significant difference (P>0.05). A high correlation (r2=0.52) was observed between morphology and motility, and the fertilization rate was 74.6% (n=56). It was concluded in general that techniques to evaluate nuclear condensation values do have a high likelihood to give a diagnosis about the future potential of sperm populations in Junín ram.
Downloads
References
BALHORN, R.; STEGER, K.; BERGMANN, M.; SCHUPPE, H.C.; NEUHAUSER, S.; BALHORN, M.C. New Monoclonal Antibodies Specific for Mammalian Protamines P1 and P2. Syst. Biol. Reprod. Med. 4(6): 424–447. 2018. https://doi.org/jctc.
BINDARI, Y.R.; SHRESTHA, S.; SHRESTHA, N.; GAIRE, T.N. Effects of Nutrition on Reproduction- A Review. Pelagia Res. Libr. 4(1): 421–429. 2013.
BJÖRNDAHL, L.; KVIST, U. Human Sperm Chromatin Stabilization: A Proposed Model Including Zinc Bridges. Mol. Hum. Reprod. 16(1): 23–29. 2009. https://doi.org/djrrvx.
BUCCI, D.; SPINACI, M.; GALEATI, G.; TAMANINI, C. Different Approaches for Assessing Sperm Function. Anim. Reprod. 16(1): 72–80. 2018. https://doi.org/jctd.
CARVALHO, L.E.; SILVA-FILHO, J.M.; PALHARES, M.S.; SALES, A.L.R.; GONCZAROWSKA, A.T.; OLIVEIRA, H.N.; RESENDE, M.; ROSSI, R. Physical and Morphological Characteristics of the First Three Jets of Pêga Jackasses Sperm-Rich Fraction. Arq. Bras. Med. Vet. Zoot. 68(4): 845–852. 2016. https://doi.org/jctf.
COOPER, T.G. The Epididymis, Cytoplasmic Droplets and Male Fertility. Asian J. Androl. 13(1): 130–138. 2011. https://doi.org/dfv5ww.
EVENSON, D.; JOST, L. Sperm Chromatin Structure Assay Is Useful for Fertility Assessment. Springer. 22(2): 169–189. 2000.
GALIOTO, F.; PAFFARINI, C.; CHIORRI, M.; TORQUATI, B.; CECCHINI, L. Economic, Environmental, and Animal Welfare Performance on Livestock Farms: Conceptual Model and Application to Some Case Studies in Italy. Sustain. 9(9): 1–22. 2017. https://doi.org/gb4rb6.
GARCÍA, J.; NORIEGA-HOCES, L.; GONZALES, G.F. Sperm Chromatin Stability and Its Relationship with Fertilization Rate after Intracytoplasmic Sperm Injection (ICSI) in an Assisted Reproduction Program. J. Assist. Reprod. Genet. 24(12): 587–593. 2007. https://doi.org/d3v9pf.
GARCÍA-VÁZQUEZ, F.; GADEA, J.; MATÁS, C.; HOLT, W. Importance of Sperm Morphology during Sperm Transport and Fertilization in Mammals. Asian J. Androl. 18(6): 844–850. 2016. https://doi.org/jctg.
GONZALES, G.F.; SÁNCHEZ, A. High Sperm Chromatin Stability in Semen with High Viscosity. Syst. Biol. Reprod. Med. 32(1): 31–35. 1994. https://doi.org/bkbvpb.
GU, N.H.; ZHAO, W.L.; WANG, G.S.; SUN, F. Comparative Analysis of Mammalian Sperm Ultrastructure Reveals Relationships between Sperm Morphology, Mitochondrial Functions and Motility. Reprod. Biol. Endocrinol. 17(1): 1–12. 2019. https://doi.org/jcth.
HAMILTON, J.A.M.; CISSEN, M.; BRANDES, M.; SMEENK, J.M.J.; DE BRUIN, J.P.; KREMER, J.A.M.; NELEN, W.L.D.M.; HAMILTON, C.J.C.M. Total Motile Sperm Count: A Better Indicator for the Severity of Male Factor Infertility than the WHO Sperm Classification System. Hum. Reprod. 30(5): 1110–1121. 2015. https://doi.org/f7c9q8.
HEKMATDOOST, A.; LAKPOUR, N.; SADEGHI, M.R. Sperm Chromatin Integrity: Etiologies and Mechanisms of Abnormality, Assays, Clinical Importance, Preventing and Repairing Damage. Avicenna J. Med. Biotechnol. 1(3): 147–160. 2009.
HOLMES, E.; BJÖRNDAHL, L.; KVIST, U. Hypotonic Challenge Reduces Human Sperm Motility through Coiling and Folding of the Tail. Androl. 52(11): 1–7. 2020. https://doi.org/gjhxjr.
KURYKIN, J.; HALLAP, T.; JALAKAS, M.; PADRIK, P.; KAART, T.; JOHANNISSON, A.; JAAKMA, Ü. Effect of Insemination-Related Factors on Pregnancy Rate Using Sexed Semen in Holstein Heifers. Czech J. Anim. Sci. 61(12): 568–577. 2016. https://doi.org/f9r8jm.
MAARES, M.; HAASE, H. A Guide to Human Zinc Absorption: General Overview and Recent Advances of in Vitro Intestinal Models. Nutrients. 12(3): 1–45. 2020. https://doi.org/gqfrs7.
MULLER, C.J.C.; CLOETE, S.W.P.; BOTHA, J.A. Fertility in Dairy Cows and Ways to Improve It. S. Afr. J. Anim. Sci. 48(5): 858–868. 2018. https://doi.org/jctj.
MUNUCE, M.J.; CAILLE, A.M.; BERTA, C.L.; PERFUMO, P.; MORISOLI, L. Does the Hypoosmotic Swelling Test Predict Human Sperm Viability? Arch. Androl. 44(3): 207–212. 2000. https://doi.org/d8bx6g.
NUR, Z.; SEVEN-CAKMAK, S.; USTUNER, B.; CAKMAK, I.; ERTURK, M.; ABRAMSON, C.I.; SAĞIRKAYA, H.; SOYLU, M.K. The Use of the Hypo-Osmotic Swelling Test, Water Test, and Supravital Staining in the Evaluation of Drone Sperm. Apidologie. 43(1): 31–38. 2012. https://doi.org/bkt786.
RAMÓN, M.; SALCES-ORTIZ, J.; GONZÁLEZ, C.; PÉREZ-GUZMÁN, M.D.; GARDE, J.J.; GARCÍA-ÁLVAREZ, O.; MAROTO-MORALES, A.; CALVO, J.H.; SERRANO, M.M. Influence of the Temperature and the Genotype of the HSP90AA1 Gene over Sperm Chromatin Stability in Manchega Rams. PLoS One. 9(1): 1–9. 2014. https://doi.org/jctk.
RIBAS-MAYNOU, J.; GARCIA-BONILLA, E.; HIDALGO, C.O.; CATALÁN, J.; MIRÓ, J.; YESTE, M. Species-Specific Differences in Sperm Chromatin Decondensation Between Eutherian Mammals Underlie Distinct Lysis Requirements. Front. Cell Dev. Biol. 9(4): 1–11. 2021. https://doi.org/jctm.
RODRIGUEZ, H.; OHANIAN, C.; BUSTOS‐OBREGON, E. Nuclear Chromatin Decondensation of Spermatozoa in vitro: A Method for Evaluating the Fertilizing Ability of Ovine Semen. Int. J. Androl. 8(2): 147–158. 1985. https://doi.org/cnt9dq.
R TEAM CORE. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna Austria. R Foundation for Statistical Computing: Vienna, Austria. Version 3.6.2. Pp 3879. 2019.
SILVA, S.F.M.; OLIVEIRA, L.C.A.; DIAS, F.C.R.; CORDERO-SCHMIDT, E.; VARGAS-MENA, J.C.; SILVA, I.G.M.; BÁO, S.N.; LUNA, J.L.S.; LIMA, R.R.M.; JÚNIOR, R.F.A.; FARIAS, N.B.S.; MOURA, C.E.B.; MATTA, S.L.P.; MORAIS, D.B. Seasonal Evaluation of Spermatogenesis of the Hematophagous Bat Desmodus Rotundus in the Caatinga Biome. PLoS One. 15(12): 1–19. 2020. https://doi.org/jctn.
TAYLOR, M.A.; GUZMÁN-NOVOA, E.; MORFIN, N.; BUHR, M.M. Improving Viability of Cryopreserved Honey Bee (Apis Mellifera L.) Sperm with Selected Diluents, Cryoprotectants, and Semen Dilution Ratios. Theriogenol. 72(2): 149–159. 2009.
UGUR, M.R.; SABER ABDELRAHMAN, A.; EVANS, H.C.; GILMORE, A.A.; HITIT, M.; ARIFIANTINI, R.I.; PURWANTARA, B.; KAYA, A.; MEMILI, E. Advances in Cryopreservation of Bull Sperm. Front. Vet. Sci., 6(6): 1–15. 2019. https://doi.org/gg8vj5.
WATHES, D.C.; OGUEJIOFOR, C.F.; THOMAS, C.; CHENG, Z. Importance of Viral Disease in Dairy Cow Fertility. Engineering. 6(1): 26–33. 2020. https://doi.org/jctp.
WETTERE, W.H.E.V.; KIND, K.L.; GATFORD, K.L.; SWINBOURNE, A.M.; LEU, S.T.; HAYMAN, P.T.; KELLY, J.M.; WEAVER, A.C.; KLEEMANN, D.O.; WALKER, S.K. Review of the Impact of Heat Stress on Reproductive Performance of Sheep. J. Anim. Sci. Biotechnol. 12(1): 1–18. 2021. https://doi.org/jctq.
WOLD HEALTH ORGANIZATION (WHO). WHO Laboratory Manual for the Examination and Processing of Human Semen, 5th. Ed.; World Health Organization. Pp 271. 2010.
WU, T.F.; CHU, D.S. Sperm Chromatin: Fertile Grounds for Proteomic Discovery of Clinical Tools. Mol. Cell. Proteomics. 7(10): 1876–1886. 2008. https://doi.org/dt79p3.
ZHENG, W.W.; SONG, G.; WANG, Q.L.; LIU, S.W.; ZHU, X.L.; DENG, S.M.; ZHONG, A.; TAN, Y.M.; TAN, Y. Sperm DNA Damage Has a Negative Effect on Early Embryonic Development Following in Vitro Fertilization. Asian J. Androl. 20(7): 75–79. 2018. https://doi.org/gbkh4x.

Copyright (c) 2022 Ide Unchupaico-Payano, Alberto Alponte-Sierra, Carlos Quispe-Eulogio, Edith Ancco-Goméz, Alex Huamán-De La Cruz, Julio Mariño-Alfaro, Alberto Patiño-Rivera, Carmencita Lavado-Meza, Lupe Huanca-Rojas, Luis Bazán-Alonso

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.