The effect of adding wheat and corn gluten to the diet of rats on the autoimmune and histopathological parameters in the intestine and liver
Abstract
This study investigated the histopathological and immunohistochemical effect on the intestine and liver tissues with addition of the soybean meal (SBM), wheat Gluten meal (WGM) and Corn gluten meal (CGM) to rat diet. A total of 24 average twenty–day–old male rats (Wistar albino) were used in the study. The rats were randomly divided into 3 groups with 8 animals in each group (Control, Wheat and Corn groups). The diet provided to all three groups contained proteins, which were SBM, WGM and CGM in the Control, Wheat and Corn groups, respectively. In the study, the group fed with SBM was used as the Control group. Rats were fed a diet containing 22% crude protein and 2,598 kcal·kg-1 metabolic energy throughout the experimental period. The feeding trial was continued for a period of 50 days. Degenerative changes of varying severity in intestinal epithelial cells and atrophy in villi were observed. Similarly, the degenerative changes, especially vacuolar or hydropic degeneration were determined in hepatocytes. It was determined that the CD4 level were statistically significantly increased in the Wheat and Corn groups compared to the Control group (P<0.01) on intestine tissue. Also, it was determined that the IgA level was statistically significantly increased of the Wheat and Corn groups in liver tissue. (P<0.05). As a result, it was observed that the histopathological and immunohistochemical parameters of the intestine and liver tissues of the rats fed with diets containing highly WGM and CGM were limitedly affected.
Downloads
References
Biesiekierski JR. What is gluten? J. Gastroenterol. Hepatol. [Internet]. 2017; 32(51):78–81. doi: https://doi.org/f9st3c
Wieser H. Chemistry of gluten proteins. Food Microbiol. [Internet]. 2007; 24(2):115–119. doi: https://doi.org/cb957r
Sharma N, Bhatia S, Chunduri V, Kaur S, Sharma S, Kapoor P, Garg M. Pathogenesis of celiac disease and other gluten related disorders in wheat and strategies for mitigating them. Front. Nutr. [Internet]. 2020; 7(6):1–26. doi: https://doi.org/mjr2
Wang Y, Zhang Z, He R, Mintah BK, Dabbour M, Qu W, Ma H. Proteolysis efficiency and structural traits of corn gluten meal: Impact of different frequency modes of a low–power density ultrasound. Food Chem. [Internet]. 2021; 344:128609. doi: https://doi.org/mjr4
Fevzioglu M, Hamaker BR, Campanella OH. Gliadin and zein show similar and improved rheological behavior when mixed with high molecular weight glutenin. J. Cereal Sci. [Internet]. 2012; 55(3):265–271. doi: https://doi.org/fzvggr
Woldemariam KY, Yuan J, Wan Z, Yu Q, Cao Y, Mao H, Sun B. Celiac disease and immunogenic wheat gluten peptides and the association of gliadin peptides with HLA DQ2 and HLA DQ8. Food Rev. Int. [Internet]. 2022; 38(7):1553–1576. doi: https://doi.org/mjr5
Cabanillas B. Gluten–related disorders: Celiac disease, wheat allergy, and nonceliac gluten sensitivity. Crit. Rev. Food Sci. Nutr. [Internet]. 2020; 60(15):2606–2621. doi: https://doi.org/gh2dmv
Freitag TL, Podojil JR, Pearson RM, Fokta FJ, Sahl C, Messing M, Getts DR. Gliadin nanoparticles induce immune tolerance to gliadin in mouse models of celiac disease. Gastroenterol. [Internet]. 2020; 158(6):1667–1681. doi: https://doi.org/gg9g8r
Novacek G, Miehsler W, Wrba F, Ferenci P, Penner E, Vogelsang H. Prevalence and clinical importance of hypertransaminasaemia in coeliac disease. Eur. J. Gastroenterol. Hepatol. [Internet]. 1999; 11(3):283–288. doi: https://doi.org/cr8bsn
Iskender H, Dokumacioglu E, Terim–Kapakin KA, Yenice G, Mohtare B, Bolat I, Hayirli A. Effects of oleanolic acid on inflammation and metabolism in diabetic rats. Biotech. Histochem. [Internet]. 2022; 97(4):269–276. doi: https://doi.org/mjr6
Kapakin KAT, Gümüş R, İmik H, Kapakin S, Sağlam YS. Effects of ascorbic and α–lipoic acid on secretion of HSP–70 and apoptosis in liver and kidneys of broilers exposed to heat stress. Ankara Univ. Vet. Fak. Derg. [Internet]. 2012; 59(4):279–287. doi: https://doi.org/mjr8
Kapakin KAT, Sahin M, Buyuk F, Kapakin S, Gursan N, Saglam YS. Respiratory tract infection induced experimentally by Ornithobacterium rhinotracheale in quails: effects on heat shock proteins and apoptosis. Revue Méd. Vét. 2013; 164(3):132–140.
Imik H, Kapakin KAT, Karabulutlu O, Gumus R, Çomakli S, Ozkaraca M. The effects of dietary wheat and corn glutens on the histopathological and immunohistochemical structure of the ovarian tissue and serum and ovarian tissue LH and FSH levels and lipid profiles in rats. Braz. Arch. Biol. Technol. [Internet]. 2023; 66:e23210726. doi: https://doi.org/mjsc
IBM Corp. Released 2011. IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY, USA: IBM Corp. 2011.
Fasano A. Clinical presentation of celiac disease in the pediatric population. Gastroenterol. [Internet]. 2005; 128:68–73. doi: https://doi.org/bvs6x7
Collin P, Syrjänen J, Partanen J, Pasternack A, Kaukinen K, Mustonen J. Celiac disease and HLA DQ in patients with IgA nephropathy. Am. J. Gastroenterol. [Internet]. 2002; 97(10):2572–2576. doi: https://doi.org/bshvj7
Sollid LM, Jabri B. Triggers and drivers of autoimmunity: lessons from coeliac disease. Nat. Rev. Immunol. [Internet]. 2013; 13(4):294–302. https://doi.org/grhbfv
Matsumoto I, Uchida K, Nakashima K, Hiyoshi S, Chambers JK, Tsujimoto H, Nakayama, H. IgA antibodies against gliadin and tissue transglutaminase in dogs with chronic enteritis and intestinal T–cell lymphoma. Vet. Pathol. [Internet]. 2018; 55(1):98–107. doi: https://doi.org/mjsx
Marsh MN. Gluten, major histocompatibility complex, and the small intestine. A molecular and immunobiologic approach to the spectrum of gluten sensitivity (‘celiac sprue’). Gastroenterol. [Internet]. 1992; 102:330–354. doi: https://doi.org/gpmqpv
Sollid LM. Coeliac disease: dissecting a complex inflammatory disorder. Nat. Rev. Immunol. [Internet]. 2002; 2(9):647–655. doi: https://doi.org/fwrjn8
Lähdeaho ML, Mäki M, Laurila K, Huhtala H, Kaukinen K. Small–bowel mucosal changes and antibody responses after low–and moderate–dose gluten challenge in celiac disease. BMC Gastroenterol. [Internet]. 2011; 11(129):1–9. doi: https://doi.org/djd6hs
Štěpánková R, Tlaskalova–Hogenova H, Šinkora J, Jodl J, Frič P. Changes in jejunal mucosa after long–term feeding of germfree rats with gluten. Scan. J. Gastroenterol. [Internet]. 1996; 31(6):551–557. doi: https://doi.org/czb3ng
Albenayan W, Alruwaili N, Pauli JR, King A, Migliore M, Zaghloul I. Development and validation of a gliadin ınduced ıntestinal enteropathy rat model of non–celiac gluten sensitivity. J. Pharm. Pharmacol. Res. [Internet]. 2021; 5(4):205–217. doi: https://doi.org/mjs4
Rubio‐Tapia A, Murray JA. The liver in celiac disease. Hepatol. [Internet]. 2007;46(5):1650–1658. doi: https://doi.org/d8w88m
Sharma BC, Bhasin DK, Nada R. Association of celiac disease with non‐cirrhotic portal fibrosis. J. Gastroenterol. Hepatol. [Internet]. 2006; 21(1):332–334. doi: https://doi.org/c2m7nv
Kim JV, Wu GY. Celiac disease and elevated liver enzymes: A review. J. Clin. Transl. Hepatol. [Internet]. 2021; 9(1):116–124. doi: https://doi.org/mjs5
Rubio‐Tapia A, Murray JA. Liver involvement in celiac disease. Minerva Med. 2008; 99(6):595–604. Cited in: PubMed; PMID 19034257.
Molberg Ø, Mcadam SN, Körner R, Quarsten H, Kristiansen C, Madsen L, Sollid LM. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut–derived T cells in celiac disease. Nat. Med. [Internet]. 1998; 4:713–717. doi: https://doi.org/ftkqwt
Bengi G, Duran Y. [Analysis of liver function tests in patients newly diagnosed with celiac disease]. Turk J. Gastroenterol. [Internet]. 2019; 18(3):95–100. Turkish. doi: https://doi.org/mjs6
Zanini B, Baschè R, Ferraresi A, Pigozzi MG, Ricci C, Lanzarotto F, Lanzini, A. Factors that contribute to hypertransaminasemia in patients with celiac disease or functional gastrointestinal syndromes. Clin. Gastroenterol. Hepatol. [Internet]. 2014; 12(5):804–810. doi: https://doi.org/f2rgg4
Hoffmanová I, Sánchez D, Hábová V, Anděl M, Tučková L, Tlaskalová–Hogenová H. Serological markers of enterocyte damage and apoptosis in patients with celiac disease, autoimmune diabetes mellitus and diabetes mellitus type 2. Physiol. Res. [Internet]. 2015;64(4):537–546. doi: https://doi.org/mjs7
Spadoni I, Zagato E, Bertocchi A, Paolinelli R, Hot E, Di Sabatino A, Rescigno M. A gut–vascular barrier controls the systemic dissemination of bacteria. Sci. [Internet]. 2015; 350(6262):830–834. doi: https://doi.org/f3ptnf
Drastich P, Honsová E, Lodererová A, Jarešová M, Pekáriková A, Hoffmanová I, Sánchez D. Celiac disease markers in patients with liver diseases: A single center large scale screening study. World J. Gastroenterol. [Internet]. 2012; 18(43):6255–6262. doi: https://doi.org/f4fn3h
Sjöberg K, Lindgren S, Eriksson S. Frequent occurrence of non–specific gliadin antibodies in chronic liver disease endomysial but not gliadin antibodies predict coeliac disease in patients with chronic liver disease. Scand. J. Gastroenterol. [Internet]. 1997; 32(11):1162–1167. doi: https://doi.org/ff2gcc
Green PHR, Cellier C. Celiac disease. N. Engl. J. Med. [Internet]. 2007; 357(17):1731–1743. doi: https://doi.org/csbng2
Björck S, Lindehammer SR, Fex M, Agardh D. Serum cytokine pattern in young children with screening detected coeliac disease. Clin. Exp. Immunol. [Internet]. 2015; 179(2):230–235. doi: https://doi.org/f25bw8
Kelly DL, Demyanovich HK, Rodriguez KM, Čiháková D, Talor MV, McMahon RP, Eaton WW. Randomized controlled trial of a gluten–free diet in patients with schizophrenia positive for antigliadin antibodies (AGA IgG): a pilot feasibility study. J. Psychiatry Neurosci. [Internet]. 2019; 44(4):269–276. doi: https://doi.org/gg892m
Vojdani A. Detection of IgE, IgG, IgA and IgM antibodies against raw and processed food antigens. Nutr. Metab. [Internet]. 2009; 6(1):1–17. doi: https://doi.org/b7cg6w
Iskender H, Dokumacıoglu E, Hayirli A, Terim Kapakin KA, Bolat I, Manavoglu Kirman E. Effects of oleanolic acid administration on renal NF–κB/IL–18/IL–6 and YKL–40/KIM–1 pathways in experimental diabetic rats. Iran J. Basic Med. Sci. [Internet]. 2023; 26(10):1–6. doi: https://doi.org/mjs8
Himmerich H, Patsalos O, Lichtblau N, Ibrahim MA, Dalton B. Cytokine research in depression: principles, challenges, and open questions. Front. Psychiatry. [Internet]. 2019; 10(30):1–16. doi: https://doi.org/ggxb38
Halstensen TS, Brandtzaeg P. Activated T lymphocytes in the celiac lesion: non‐proliferative activation (CD25) of CD4+ α/β cells in the lamina propria but proliferation (Ki‐67) of α/β and γ/δ cells in the epithelium. Eur. J. Immunol. [Internet]. 1993; 23(2):505–510. doi: https://doi.org/cksgvv
Brandtzaeg P, Halstensen TS, Kett K, Krajči P, Kvale D, Rognum TO, Sollid LM. Immunobiology and immunopathology of human gut mucosa: humoral immunity and intraepithelial lymphocytes. Gastroenterol. [Internet]. 1989; 97:1562–1584. doi: https://doi.org/mjs9
Nilsen EM, Lundin KE, Krajci P, Scott H, Sollid LM, Brandtzaeg P. Gluten specific, HLA–DQ restricted T cells from coeliac mucosa produce cytokines with Th1 or Th0 profile dominated by interferon gamma. Gut. [Internet]. 1995; 37(6):766–776. doi: https://doi.org/fpz6c8
Risnes LF, Eggesbø LM, Christophersen A, Sollid LM. Response to: “Some considerations about γδ and CD8+ T–cell responses in blood after gluten challenge in treated celiac disease”. Mucosal Immunol. [Internet]. 2021; 14(5):1216–1217. doi: https://doi.org/gkhf8s
Leonard MM, Silvester JA, Leffler D, Fasano A, Kelly CP, Lewis SK, Smithson G. Evaluating responses to gluten challenge: a randomized, double–blind, 2–dose gluten challenge trial. Gastroenterol. [Internet]. 2021; 160(3):720–733. doi: https://doi.org/mjtb
Gümüş R, Uslu S, Aydoğdu U, İmik A, Ekici M. Investigation of the effects of glutens on serum ınterleukin–1 beta and tumor necrosis factor–alpha levels and the ımmunohistochemical distribution of CD3 and CD8 receptors in the small intestine in male rats. Braz. Arch. Biol. Technol. [Internet]. 2021; 64:e21210256. doi: https://doi.org/mjtc
Copyright (c) 2024 Recep Gümüş, Kübra Asena Terim Kapakin, Esra Manavoğlu Kirman, İsmail Bolat, Aybuke İmik, Nazlı Ercan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.