The effect of adding wheat and corn gluten to the diet of rats on the autoimmune and histopathological parameters in the intestine and liver

  • Recep Gümüş Sivas Cumhuriyet University, Faculty of Veterinary Medicine, Department of Animal Nutrition and Nutritional Diseases. Sivas, Türkiye
  • Kübra Asena Terim Kapakin Ataturk University, Faculty of Veterinary Medicine, Department of Veterinary Pathology. Erzurum, Türkiye
  • Esra Manavoğlu Kirman Ataturk University, Faculty of Veterinary Medicine, Department of Veterinary Pathology. Erzurum, Türkiye
  • İsmail Bolat Ataturk University, Faculty of Veterinary Medicine, Department of Veterinary Pathology. Erzurum, Türkiye
  • Aybuke İmik Selçuk University, Faculty of Health Sciences, Department of Nutrition and Dietetics. Konya, Türkiye
  • Nazlı Ercan Sivas Cumhuriyet University, Faculty of Veterinary Medicine, Department of Biochemistry, Sivas, Türkiye
Keywords: Autoimmune, gluten, histopathology, intestine, liver

Abstract

This study investigated the histopathological and immunohistochemical effect on the intestine and liver tissues with addition of the soybean meal (SBM), wheat Gluten meal (WGM) and Corn gluten meal (CGM) to rat diet. A total of 24 average twenty–day–old male rats (Wistar albino) were used in the study. The rats were randomly divided into 3 groups with 8 animals in each group (Control, Wheat and Corn groups). The diet provided to all three groups contained proteins, which were SBM, WGM and CGM in the Control, Wheat and Corn groups, respectively. In the study, the group fed with SBM was used as the Control group. Rats were fed a diet containing 22% crude protein and 2,598 kcal·kg-1 metabolic energy throughout the experimental period. The feeding trial was continued for a period of 50 days. Degenerative changes of varying severity in intestinal epithelial cells and atrophy in villi were observed. Similarly, the degenerative changes, especially vacuolar or hydropic degeneration were determined in hepatocytes. It was determined that the CD4 level were statistically significantly increased in the Wheat and Corn groups compared to the Control group (P<0.01) on intestine tissue. Also, it was determined that the IgA level was statistically significantly increased of the Wheat and Corn groups in liver tissue. (P<0.05). As a result, it was observed that the histopathological and immunohistochemical parameters of the intestine and liver tissues of the rats fed with diets containing highly WGM and CGM were limitedly affected.

Downloads

Download data is not yet available.

References

Biesiekierski JR. What is gluten? J. Gastroenterol. Hepatol. [Internet]. 2017; 32(51):78–81. doi: https://doi.org/f9st3c

Wieser H. Chemistry of gluten proteins. Food Microbiol. [Internet]. 2007; 24(2):115–119. doi: https://doi.org/cb957r

Sharma N, Bhatia S, Chunduri V, Kaur S, Sharma S, Kapoor P, Garg M. Pathogenesis of celiac disease and other gluten related disorders in wheat and strategies for mitigating them. Front. Nutr. [Internet]. 2020; 7(6):1–26. doi: https://doi.org/mjr2

Wang Y, Zhang Z, He R, Mintah BK, Dabbour M, Qu W, Ma H. Proteolysis efficiency and structural traits of corn gluten meal: Impact of different frequency modes of a low–power density ultrasound. Food Chem. [Internet]. 2021; 344:128609. doi: https://doi.org/mjr4

Fevzioglu M, Hamaker BR, Campanella OH. Gliadin and zein show similar and improved rheological behavior when mixed with high molecular weight glutenin. J. Cereal Sci. [Internet]. 2012; 55(3):265–271. doi: https://doi.org/fzvggr

Woldemariam KY, Yuan J, Wan Z, Yu Q, Cao Y, Mao H, Sun B. Celiac disease and immunogenic wheat gluten peptides and the association of gliadin peptides with HLA DQ2 and HLA DQ8. Food Rev. Int. [Internet]. 2022; 38(7):1553–1576. doi: https://doi.org/mjr5

Cabanillas B. Gluten–related disorders: Celiac disease, wheat allergy, and nonceliac gluten sensitivity. Crit. Rev. Food Sci. Nutr. [Internet]. 2020; 60(15):2606–2621. doi: https://doi.org/gh2dmv

Freitag TL, Podojil JR, Pearson RM, Fokta FJ, Sahl C, Messing M, Getts DR. Gliadin nanoparticles induce immune tolerance to gliadin in mouse models of celiac disease. Gastroenterol. [Internet]. 2020; 158(6):1667–1681. doi: https://doi.org/gg9g8r

Novacek G, Miehsler W, Wrba F, Ferenci P, Penner E, Vogelsang H. Prevalence and clinical importance of hypertransaminasaemia in coeliac disease. Eur. J. Gastroenterol. Hepatol. [Internet]. 1999; 11(3):283–288. doi: https://doi.org/cr8bsn

Iskender H, Dokumacioglu E, Terim–Kapakin KA, Yenice G, Mohtare B, Bolat I, Hayirli A. Effects of oleanolic acid on inflammation and metabolism in diabetic rats. Biotech. Histochem. [Internet]. 2022; 97(4):269–276. doi: https://doi.org/mjr6

Kapakin KAT, Gümüş R, İmik H, Kapakin S, Sağlam YS. Effects of ascorbic and α–lipoic acid on secretion of HSP–70 and apoptosis in liver and kidneys of broilers exposed to heat stress. Ankara Univ. Vet. Fak. Derg. [Internet]. 2012; 59(4):279–287. doi: https://doi.org/mjr8

Kapakin KAT, Sahin M, Buyuk F, Kapakin S, Gursan N, Saglam YS. Respiratory tract infection induced experimentally by Ornithobacterium rhinotracheale in quails: effects on heat shock proteins and apoptosis. Revue Méd. Vét. 2013; 164(3):132–140.

Imik H, Kapakin KAT, Karabulutlu O, Gumus R, Çomakli S, Ozkaraca M. The effects of dietary wheat and corn glutens on the histopathological and immunohistochemical structure of the ovarian tissue and serum and ovarian tissue LH and FSH levels and lipid profiles in rats. Braz. Arch. Biol. Technol. [Internet]. 2023; 66:e23210726. doi: https://doi.org/mjsc

IBM Corp. Released 2011. IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY, USA: IBM Corp. 2011.

Fasano A. Clinical presentation of celiac disease in the pediatric population. Gastroenterol. [Internet]. 2005; 128:68–73. doi: https://doi.org/bvs6x7

Collin P, Syrjänen J, Partanen J, Pasternack A, Kaukinen K, Mustonen J. Celiac disease and HLA DQ in patients with IgA nephropathy. Am. J. Gastroenterol. [Internet]. 2002; 97(10):2572–2576. doi: https://doi.org/bshvj7

Sollid LM, Jabri B. Triggers and drivers of autoimmunity: lessons from coeliac disease. Nat. Rev. Immunol. [Internet]. 2013; 13(4):294–302. https://doi.org/grhbfv

Matsumoto I, Uchida K, Nakashima K, Hiyoshi S, Chambers JK, Tsujimoto H, Nakayama, H. IgA antibodies against gliadin and tissue transglutaminase in dogs with chronic enteritis and intestinal T–cell lymphoma. Vet. Pathol. [Internet]. 2018; 55(1):98–107. doi: https://doi.org/mjsx

Marsh MN. Gluten, major histocompatibility complex, and the small intestine. A molecular and immunobiologic approach to the spectrum of gluten sensitivity (‘celiac sprue’). Gastroenterol. [Internet]. 1992; 102:330–354. doi: https://doi.org/gpmqpv

Sollid LM. Coeliac disease: dissecting a complex inflammatory disorder. Nat. Rev. Immunol. [Internet]. 2002; 2(9):647–655. doi: https://doi.org/fwrjn8

Lähdeaho ML, Mäki M, Laurila K, Huhtala H, Kaukinen K. Small–bowel mucosal changes and antibody responses after low–and moderate–dose gluten challenge in celiac disease. BMC Gastroenterol. [Internet]. 2011; 11(129):1–9. doi: https://doi.org/djd6hs

Štěpánková R, Tlaskalova–Hogenova H, Šinkora J, Jodl J, Frič P. Changes in jejunal mucosa after long–term feeding of germfree rats with gluten. Scan. J. Gastroenterol. [Internet]. 1996; 31(6):551–557. doi: https://doi.org/czb3ng

Albenayan W, Alruwaili N, Pauli JR, King A, Migliore M, Zaghloul I. Development and validation of a gliadin ınduced ıntestinal enteropathy rat model of non–celiac gluten sensitivity. J. Pharm. Pharmacol. Res. [Internet]. 2021; 5(4):205–217. doi: https://doi.org/mjs4

Rubio‐Tapia A, Murray JA. The liver in celiac disease. Hepatol. [Internet]. 2007;46(5):1650–1658. doi: https://doi.org/d8w88m

Sharma BC, Bhasin DK, Nada R. Association of celiac disease with non‐cirrhotic portal fibrosis. J. Gastroenterol. Hepatol. [Internet]. 2006; 21(1):332–334. doi: https://doi.org/c2m7nv

Kim JV, Wu GY. Celiac disease and elevated liver enzymes: A review. J. Clin. Transl. Hepatol. [Internet]. 2021; 9(1):116–124. doi: https://doi.org/mjs5

Rubio‐Tapia A, Murray JA. Liver involvement in celiac disease. Minerva Med. 2008; 99(6):595–604. Cited in: PubMed; PMID 19034257.

Molberg Ø, Mcadam SN, Körner R, Quarsten H, Kristiansen C, Madsen L, Sollid LM. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut–derived T cells in celiac disease. Nat. Med. [Internet]. 1998; 4:713–717. doi: https://doi.org/ftkqwt

Bengi G, Duran Y. [Analysis of liver function tests in patients newly diagnosed with celiac disease]. Turk J. Gastroenterol. [Internet]. 2019; 18(3):95–100. Turkish. doi: https://doi.org/mjs6

Zanini B, Baschè R, Ferraresi A, Pigozzi MG, Ricci C, Lanzarotto F, Lanzini, A. Factors that contribute to hypertransaminasemia in patients with celiac disease or functional gastrointestinal syndromes. Clin. Gastroenterol. Hepatol. [Internet]. 2014; 12(5):804–810. doi: https://doi.org/f2rgg4

Hoffmanová I, Sánchez D, Hábová V, Anděl M, Tučková L, Tlaskalová–Hogenová H. Serological markers of enterocyte damage and apoptosis in patients with celiac disease, autoimmune diabetes mellitus and diabetes mellitus type 2. Physiol. Res. [Internet]. 2015;64(4):537–546. doi: https://doi.org/mjs7

Spadoni I, Zagato E, Bertocchi A, Paolinelli R, Hot E, Di Sabatino A, Rescigno M. A gut–vascular barrier controls the systemic dissemination of bacteria. Sci. [Internet]. 2015; 350(6262):830–834. doi: https://doi.org/f3ptnf

Drastich P, Honsová E, Lodererová A, Jarešová M, Pekáriková A, Hoffmanová I, Sánchez D. Celiac disease markers in patients with liver diseases: A single center large scale screening study. World J. Gastroenterol. [Internet]. 2012; 18(43):6255–6262. doi: https://doi.org/f4fn3h

Sjöberg K, Lindgren S, Eriksson S. Frequent occurrence of non–specific gliadin antibodies in chronic liver disease endomysial but not gliadin antibodies predict coeliac disease in patients with chronic liver disease. Scand. J. Gastroenterol. [Internet]. 1997; 32(11):1162–1167. doi: https://doi.org/ff2gcc

Green PHR, Cellier C. Celiac disease. N. Engl. J. Med. [Internet]. 2007; 357(17):1731–1743. doi: https://doi.org/csbng2

Björck S, Lindehammer SR, Fex M, Agardh D. Serum cytokine pattern in young children with screening detected coeliac disease. Clin. Exp. Immunol. [Internet]. 2015; 179(2):230–235. doi: https://doi.org/f25bw8

Kelly DL, Demyanovich HK, Rodriguez KM, Čiháková D, Talor MV, McMahon RP, Eaton WW. Randomized controlled trial of a gluten–free diet in patients with schizophrenia positive for antigliadin antibodies (AGA IgG): a pilot feasibility study. J. Psychiatry Neurosci. [Internet]. 2019; 44(4):269–276. doi: https://doi.org/gg892m

Vojdani A. Detection of IgE, IgG, IgA and IgM antibodies against raw and processed food antigens. Nutr. Metab. [Internet]. 2009; 6(1):1–17. doi: https://doi.org/b7cg6w

Iskender H, Dokumacıoglu E, Hayirli A, Terim Kapakin KA, Bolat I, Manavoglu Kirman E. Effects of oleanolic acid administration on renal NF–κB/IL–18/IL–6 and YKL–40/KIM–1 pathways in experimental diabetic rats. Iran J. Basic Med. Sci. [Internet]. 2023; 26(10):1–6. doi: https://doi.org/mjs8

Himmerich H, Patsalos O, Lichtblau N, Ibrahim MA, Dalton B. Cytokine research in depression: principles, challenges, and open questions. Front. Psychiatry. [Internet]. 2019; 10(30):1–16. doi: https://doi.org/ggxb38

Halstensen TS, Brandtzaeg P. Activated T lymphocytes in the celiac lesion: non‐proliferative activation (CD25) of CD4+ α/β cells in the lamina propria but proliferation (Ki‐67) of α/β and γ/δ cells in the epithelium. Eur. J. Immunol. [Internet]. 1993; 23(2):505–510. doi: https://doi.org/cksgvv

Brandtzaeg P, Halstensen TS, Kett K, Krajči P, Kvale D, Rognum TO, Sollid LM. Immunobiology and immunopathology of human gut mucosa: humoral immunity and intraepithelial lymphocytes. Gastroenterol. [Internet]. 1989; 97:1562–1584. doi: https://doi.org/mjs9

Nilsen EM, Lundin KE, Krajci P, Scott H, Sollid LM, Brandtzaeg P. Gluten specific, HLA–DQ restricted T cells from coeliac mucosa produce cytokines with Th1 or Th0 profile dominated by interferon gamma. Gut. [Internet]. 1995; 37(6):766–776. doi: https://doi.org/fpz6c8

Risnes LF, Eggesbø LM, Christophersen A, Sollid LM. Response to: “Some considerations about γδ and CD8+ T–cell responses in blood after gluten challenge in treated celiac disease”. Mucosal Immunol. [Internet]. 2021; 14(5):1216–1217. doi: https://doi.org/gkhf8s

Leonard MM, Silvester JA, Leffler D, Fasano A, Kelly CP, Lewis SK, Smithson G. Evaluating responses to gluten challenge: a randomized, double–blind, 2–dose gluten challenge trial. Gastroenterol. [Internet]. 2021; 160(3):720–733. doi: https://doi.org/mjtb

Gümüş R, Uslu S, Aydoğdu U, İmik A, Ekici M. Investigation of the effects of glutens on serum ınterleukin–1 beta and tumor necrosis factor–alpha levels and the ımmunohistochemical distribution of CD3 and CD8 receptors in the small intestine in male rats. Braz. Arch. Biol. Technol. [Internet]. 2021; 64:e21210256. doi: https://doi.org/mjtc

Published
2024-03-11
How to Cite
1.
Gümüş R, Terim Kapakin KA, Kirman EM, Bolat İsmail, İmik A, Ercan N. The effect of adding wheat and corn gluten to the diet of rats on the autoimmune and histopathological parameters in the intestine and liver. Rev. Cient. FCV-LUZ [Internet]. 2024Mar.11 [cited 2024Nov.24];34(1):9. Available from: https://mail.produccioncientificaluz.org/index.php/cientifica/article/view/41706
Section
Veterinary Medicine