Molecular and epidemiological analysis of Babesiosis by Babesia bigemina in cattle from the Giron Municipality, Azuay, Ecuador

  • Jorge Gualberto Bustamante–Ordóñez Universidad de Cuenca, Facultad de Ciencias Agropecuarias. Cuenca, Ecuador - Universidad del Zulia, Facultad de Ciencias Veterinarias. Zulia, Venezuela.
  • Diego Andrés Bustamante–Guzmán Universidad de Cuenca, Facultad de Ciencias Químicas. Cuenca, Ecuador
  • Sergio Emiro Rivera-Pirela Universidad del Zulia, Facultad de Ciencias Veterinarias. Zulia, Venezuela
Keywords: Epidemiology, geomorphological levels, qPCR–RT, PCR–RFLP, babesiosis, prevalence, risk factors

Abstract

Babesiosis is a disease caused by an intraerythrocytic protozoan Phylum Apicomplexa, class Sporozoea, subclass Piroplasmea, superfamily Babesioidea, family Babesidae, genus Babesia within which the species Babesia bovis and B. bigemina in cattle stand out. It occurs in the tropics and subtropics of the World and is transmitted mainly by Rhipicephalus microplus ticks. Whole blood samples were analyzed using Giemsa stained blood smears, conventional PCR to detect, from the DNA in variable regions of the 18S rRNA gene, the 393 bp band corresponding to B. bigemina, then subjected to the restriction enzyme Alu. I (5'AG↓CT3' recognition sequence), capable of cutting the ribosomal DNA amplicon of B. bigemina, generating three fragments of 38, 144 and 211 bp. For qPCR–RT amplification, the B. bigemina–specific Primer design qPCR kit was used. By jugular vein puncture, 100 samples of bovines belonging to the Agricultural Production Units (UPA) of two geomorphological levels less-than 2,200 masl (low) and greater-than 2,200 masl (high) were obtained, Girón Municipality, inter–Andean alley of the Republic from Ecuador with Holstein and Criollo Mestizo cattle that produce milk. The R. microplus tick was detected in 100% of the animals evaluated. With epidemiological surveys, different local risk factors associated with bovine babesiosis were analyzed, according to the results obtained with each of the techniques. Using blood smears, 16 of samples positive for B. bigemina were identified, 7.54% in low and 25.53% in high. By PCR–RFLP 11 with 9.43% low and 12.76% high. The qPCR–RT showed a higher prevalence of 43% of B. bigemina with 54.72% low and 29.79% high. Altitude was significantly associated with parasitemia in high areas according to the Giemsa–stained smear technique. Different results were obtained with the qPCR kit, which revealed higher parasitemia in low–lying areas, with low vector load, tick–killing baths less-than 60 days, and in the winter season, when the presence of B. bigemina increased significantly.

Downloads

Download data is not yet available.

References

Carter PD, Rolls P. Babesiosis in Animals. En: MSD Veterinary Manual [Internet]. Rahway, NJ, EUA: Merck & Co; 2022 [Consultado 24 Jun. 2023]. Disponible en: https://goo.su/Cn9YzT

Durden LA, Keirans JE. Description of the Larva, Diagnosis of the Nymph and Female Based on Scanning Electron Microscopy, Hosts, and Distribution of Ixodes (Ixodes) venezuelensis. Med. Vet. Entomol. [Internet]. 1994; 8(4):310–316. doi: https://doi.org/bw7d8x

Ogden NH, Ben–Beard C, Ginsberg HS, Tsao JI. Possible Effects of Climate Change on Ixodid Ticks and the Pathogens They Transmit: Predictions and Observations. J. Med. Entomol. [Internet]. 2021; 58(4):1536–1545. doi: https://doi.org/gm662q

Yang W, Kang X, Yang Q, Lin Y, Fang M. Review on the development of genotyping methods for assessing farm animal diversity. J. Anim. Sci. Biotechnol. [Internet]. 2013; 4(2):1–6. doi: https://doi.org/gh2thx

Ministerio de Agricultura y Ganadería, III Censo Nacional Agropecuario. Volumen 1 [Internet] Quito: Instituto Nacional de Estadística y Censos; 2002 [Consultado 28 Sep. 2022]; 57 p. Disponible en: https://goo.su/A6vH

Universidad de Cuenca, GAD Municipal de Girón. Plan de Desarrollo y Ordenamiento Territorial del Cantón Girón (2015–2019). Tomo I. Diagnóstico medio físico [Internet]. 2021 [Consultado 3 Ago. 2021]; Cap. 2.1. p. 2.1.1–2.1.96. Disponible en: https://goo.su/5UdkAjT

Organización Mundial de Sanidad Animal. Babesiosis bovina. En: OMSA, editor. Manual de las Pruebas de Diagnóstico y de las Vacunas para los Animales Terrestres [Internet]. Paris: OMSA; 2023 [Consultado 3 Abr. 2023]. 18 p. Disponible en: https://goo.su/rNE3ij

El–Ashker M, Hotzel H, Gwida M, El–Beskawy M, Silaghi C, Tomaso H. Molecular biological identification of Babesia, Theileria, and Anaplasma species in cattle in Egypt using PCR assays, gene sequence analysis and a novel DNA microarray. Vet. Parasitol. [Internet]. 2015; 207(3–4):329–334. doi: https://doi.org/f6zhvw

Cortés–Vecino JA, Betancourt–Echeverri JA, Argüelles–Cárdenas J, Pulido–Herrera LA. Distribución de garrapatas Rhipicephalus (Boophilus) microplus en bovinos y fincas del Altiplano Cundiboyacense (Colombia). Corpoica Cienc. Tecnol. Agropecu. [Internet]. 2010; 11(1):73–84. doi: https://doi.org/mrg9

Jabbar MA, Deekshatulu BL, Chandra P. En: Snášel V, Abraham A, Krömer P, Pant M, Muda A, editors. Innovations in Bio–Inspired Computing and Applications. Advances in Intelligent Systems and Computing [Internet]. Vol. 424. New York: Springer International Publishing; 2016. p 187–196. doi: https://doi.org/mrh9

Radostits OM, Gay CC, Hinchcliff KW, Constable PD. Veterinary Medicine: A textbook of Diseases of Cattle, Horses, Sheep, Pigs and Goats. Philadelphia: Saunders LTD; 2007. 2180 p.

Hazem EM, Ebied MH, Mohamed GA, Amr Abdel AE. Epidemiological studies on bovine Babesiosis and Theileriosis in Qalubia Governorate. Benha Vet. Med. J. [Internet]. 2014 [consultado 28 Ago. 2023]; 27(1):36–48. Disponible en: https://goo.su/M3R230

Altay K, Aydin MF, Dumanli N, Aktas M. Molecular detection of Theileria and Babesia infections in cattle. Vet. Parasitol. [Internet]. 2008; 158(4):295–301. doi: https://doi.org/bftwc8

Kadry K. Polymerase Chain Reaction (PCR): Principle and Applications. En: Nagpal ML, Boldura OM, Baltă C, Enany S, editors. Synthetic Biology – New Interdisciplinary Science [Internet]. Londres: IntechOpen; 2019. 17 p. doi: https://doi.org/mrjn

Kim C, Iseki H, Herbas MS, Yokoyama N, Suzuki H, Xuan X, Fujisaki K, Igarashi I. Development of TaqMan–based real–time PCR assays for diagnostic detection of Babesia bovis and Babesia bigemina. Am. J. Trop. Med. Hyg. [Internet]. 2007; 77(5):837–841. doi: https://doi.org/mrjp

Buling A, Criado–Fornelio A, Asenzo G, Benitez D, Barba–Carretero JC, Florin–Christensen MA. A quantitative PCR assay for the detection and quantification of Babesia bovis and B. bigemina. Vet. Parasitol. [Internet]. 2007; 147(1–2):16–25. doi: https://doi.org/dmg6wd

Giglioti R, Oliveira HN, Santana CH, Ibelli AMG, Néo TA, Bilhassi TB, Rabelo MD, Machado RZ, Brito LG, Oliveira MCS. Babesia bovis and Babesia bigemina infection levels estimated by qPCR in Angus cattle from an endemic area of São Paulo state, Brazil. Ticks Tick Borne Dis. [Internet]. 2016; 7(5):657–662. doi: https://doi.org/f8xt3c

Ríos S, Ríos LA. Principales marcadores moleculares utilizados para la identificación de Babesia bovis y Babesia bigemina. Rev. MVZ Córdoba. [Internet]. 2011; 16(2):2470–2483. doi: https://doi.org/mrjq

Allsopp MTEP, Visser ES, du Plessis JL, Vogel SW, Allsopp BA. Different organisms associated with heartwater as shown by analysis of 16S ribosomal RNA gene sequences. Vet. Parasitol. [Internet]. 1997; 71(4):283–300. https://doi.org/dv9b5v

Allsopp MT, Allsopp BA. Molecular sequence evidence for the reclassification of some Babesia species. Ann. N. Y. Acad. Sci. [Internet]. 2006; 1081(1):509–517. doi: https://doi.org/ctkv9t

Carret C, Walas F, Carcy B. Grande N, Précigout É, Moubri K, Schetters TP, Gorenflot A. Babesia canis canis, Babesia canis voaeli, Babesia canis rossi: Differentiation of the Three Subspecies By A Restriction Fragment Length Polymorphism Analysis On Amplified Small Subunit Ribosomal Rna Genes. J. Eukaryot. Microbiol [Internet]. 1999; 46(3):298–303. doi: https://doi.org/drjrcd

Adham FK, Abd–El–Samie EM, Gabre RM, Hussein HE. Detection of tick blood parasites in Egypt using PCR assay I—Babesia bovis and Babesia bigemina. Parasitol. Res. [Internet]. 2009; 105:721–730. doi: https://doi.org/c2nnhs

Durrani AZ, Kamal N. Identification of ticks and detection of blood protozoa in friesian cattle by polmerase chain reacton test and estimation of blood parameters in district Kasur, Pakistan. Trop. Anim. Health Prod. [Internet]. 2008; 40:441–447. doi: https://doi.org/bwxhft

Luo J, Yin H, Liu Z, Yang D, Guan G, Liu A, Ma M, Dang S, Lu B, Sun C, Bai Q, Lu W, Chen P. Molecular phylogenetic studies on an unnamed bovine Babesia sp. based on small subunit ribosomal RNA gene sequences. Vet. Parasitol. [Internet] .2005; 133(1):1–6. doi: https://doi.org/b3wvfq

Ramos CA, Araújo FR, Souza I I, Bacanelli G, Luiz HL, Russi LS, Oliveira RHM, Soare CO, Rosinha G, Alves LC. Real–time polymerase chain reaction based on msa2c gene for detection of Babesia bovis. Vet. Parasitol. [Internet]. 2011; 176(1):79–83. doi: https://doi.org/b7njgm

Schnittger L, Ganzinelli S, Bhoora R, Omondi D, Nijhof AM, Florin–Christensen M. The Piroplasmida Babesia, Cytauxzoon, and Theileria in farm and companion animals: Species compilation, molecular phylogeny, and evolutionary insights. Parasitol. Res. [Internet]. 2022; 121(5):1207–1245. doi: https://doi.org/gpc8b6

Néo TA, Giglioti R, Obregón D, Bilhassi TB, Oliveira HN, Machado RZ, Aníbal FF, Brito LG, Malagó W Jr, Bressani FA, Oliveira MCS. Detection of Babesia bovis and Babesia bigemina in water buffaloes (Bubalus bubalis) in endemic areas of São Paulo state, Brazil. Open J. Vet. Med. [Internet]. 2016; 6:75–84. doi: https://doi.org/mrjr

Olmeda AS, Armstrong PM, Rosentha BM, Valladares B, Del Castillo A, De Armas F, Miguelez M, González A, Rodriguez JA, Spielman A, Telford III SR. A subtropical case of human babesiosis. Acta Trop. [Internet]. 1997; 67(3):229–234. doi: https://doi.org/bs6x45

Martínez–Mercado MR, Caraballo–Blanco LE, Blanco–Tuirán PJ. Babesia bigemina en bovinos del municipio Los Palmitos (Sucre, Colombia). Cienc. Tecnol. Agropecuaria. [Internet]. 2019; 20(1):29–40. doi: https://doi.org/mrkc

Figueroa–Millán JV, Lira–Amaya JJ, Castañeda–Arriola R, Álvarez–Martínez JA, Rojas–Martínez C, Bautista–Garfias CR. Optimización de una prueba de PCR–RFLP para detección y diferenciación de Babesia sp. en garrapatas Rhipicephalus microplus. Entomol. Mex. [Internet]. 2014 [consultado 12 agosto 2023]; 1:978–983. Disponible en: https://goo.su/8fkJ8r

Arboleda–García MA. Diagnóstico molecular y prevalencia de Babesia spp. mediante PCR–RFLP en ganado bovino de la provincia de Manabí – Ecuador. [tesis de maestría en Internet]. Sangolquí, Ecuador: Universidad de las Fuerzas Armadas ESPE; 2019 [consultada 12 febrero 2023]. 72 p. Disponible en: https://goo.su/x7jE

Mosqueda J, Olvera–Ramirez A, Aguilar–Tipacamu G, Canto GJ. Current Advances in Detection and Treatment of Babesiosis. Curr. Med. Chem. [Internet]. 2012; 19(10):1504–1518. doi: https://doi.org/mrkg

Oliveira–Sequeira TCG, Oliveira MCS, Araujo JP, Amarante FT. PCR–based detection of Babesia bovis and Babesia bigemina in their natural host Boophilus microplus and cattle. Int. J. Parasitol. [Internet]. 2005; 35(1):105–111. doi: https://doi.org/fmrpwj

Romero–Pérez LE. Registros de garrapatas en El Salvador. Agrociencia [Internet]. 2021; 20(5):60–64. doi: https://doi.org/mrkh

Sturges HA. The Choice of a Class–Interval. J. Am. Stat. Assoc. [Internet]. 1926; 21(153):65–66. doi: https://doi.org/gfpnzj

Chávez–Larrea MA, Cholota–Iza, C, Medina–Naranjo, V, Yugcha–Díaz M, Ron–Román J, Martin–Solano S, Gómez–Mendoza G, Saegerman C, Reyna–Bello A. Detection of Babesia spp. in High Altitude Cattle in Ecuador, Possible Evidence of the Adaptation of Vectors and Diseases to New Climatic Conditions. Pathogens. [Internet]. 2021; 10(12):1593. doi: https://doi.org/mrkj

Benavides–Ortíz E, Polanco–Palencia N, Vizcaíno–Gerdts O, Betancur–Hurtado O. Criterios y protocolos para el diagnóstico de hemoparásitos en bovinos. Revista Ciencia Animal. 2012 [consultado 20 Ene. 2023]; 1(5):31–49. Disponible en: https://goo.su/e1cd0

Chauvin A, Moreau E, Bonnet S, Plantard O, Malandrin L. Babesia and its hosts: adaptation to long–lasting interactions as a way to achieve efficient transmission. Vet. Res. [Internet]. 2009; 40(2):37. doi: https://doi.org/fgg3gb

Obregón D, Rabelo MD, Giglioti R, Bilhassi TB, Néo TA, Corona B, Alfonso P, Machado RZ, Oliveira MCS. Standardization of a SYBR green based real–time PCR system for detection and molecular quantification of Babesia bovis and B. bigemina in water buffaloes (Bubalus bubalis). J. Buffalo Sci. [Internet]. 2016; 5(2):44–52. doi: https://doi.org/mrkk

Bilhassi TB, Oliveira HN, Ibelli AM, Giglioti R, Regitano LC, Oliveira–Sequeira TCG, Bressani FA, Malagó W Jr, Resende FD, Oliveira MCS. Quantitative study of Babesia bovis infection in beef cattle from São Paulo state, Brazil. Ticks Tick Borne Dis. [Internet]. 2014; 5(3):234–238. doi: https://doi.org/f685sz

Published
2024-04-11
How to Cite
1.
Bustamante–Ordóñez JG, Bustamante–Guzmán DA, Rivera-Pirela SE. Molecular and epidemiological analysis of Babesiosis by Babesia bigemina in cattle from the Giron Municipality, Azuay, Ecuador. Rev. Cient. FCV-LUZ [Internet]. 2024Apr.11 [cited 2024Nov.24];34(1):10. Available from: https://mail.produccioncientificaluz.org/index.php/cientifica/article/view/41934
Section
Veterinary Medicine