Protective effect of Helichrysum plicatum on head shock protein inflammation and apoptosis in Gentamicin induced nephrotoxicity
Abstract
Gentamicin (GM) is an aminoglycoside antibiotic the most common used in the treatment of infectious diseases in humans and animals. However, GM causes damage to many tissues and organs in the body, especially the kidneys. Helichrysum plicatum (Hp), native to the Balkans and Anatolia, is a plant used in various diseases such as diabetes, liver and kidney damage. In this study, Male Spraque Dawley rats (n=36 and 200–250 g) were randomly divided into 6 experimental groups: Group 1: Control; received normal saline (intraperitoneally –i.p.–), Group 2: Hp (100 mg·kg–1 day i.p.), Group 3: Hp (200 mg·kg–1 day i.p.), Group 4: GM (80 mg·kg–1 day i.p.), Group 5: GM 80 + Hp 100 (mg·kg–1 day i.p.), and Group 6: GM 80 + Hp 200 (mg·kg–1 day i.p.). Then kidney tissue samples were collected for evaluations. All of our results showed that Hp (100 mg·kg–1 day) reduced the levels of pro–inflammatory cytokines such as IL–8, IL–6, and TNF– while increasing the level of anti–inflammatory cytokine IL–10. It was also observed that Hp reduced the expressions of the caspase3, NOS and Heat shock proteins such as Hsp27 and Hsp70. With this study, we have shown that Hp probably due to its chemical properties has a protective effect against GM induced nephrototoxicity by reducing the values stated above to normal values.
Downloads
References
Becker B, Cooper MA. Aminoglycoside Antibiotics in the 21st Century. ACS. Chem. Biol. [Internet]. 2013; 8(1):105–15. doi: https://doi.org/f4jnqm
Jado JC, Humanes B, González–Nicolás MÁ, Camaño S, Lara JM, López B, Emilia C, García–Bordas J, Tejedor A, Lazaro A. Nephroprotective Effect of Cilastatin against Gentamicin–Induced Renal Injury In Vitro and In Vivo without Altering Its Bactericidal Efficiency. Antioxidants [Internet]. 2020; 9(9):821. doi: https://doi.org/gq5x84
Edeogu CO, Kalu ME, Famurewa AC, Asogwa NT, Onyeji GN, Ikpemo KO. Nephroprotective Effect of Moringa Oleifera Seed Oil on Gentamicin–Induced Nephrotoxicity in Rats: Biochemical Evaluation of Antioxidant, Anti–inflammatory, and Antiapoptotic Pathways. J. Am. Coll. Nutr. [Internet]. 2020; 39(4):307–315. doi: https://doi.org/ghj22w
Apaydin Yildirim B, Kordali S, Terim Kapakin KA, Yildirim F, Aktas Senocak E, Altun S. Effect of Helichrysum plicatum DC. subsp. plicatum ethanol extract on gentamicin–induced nephrotoxicity in rats. J. Zhejiang Univ. Sci. B. [Internet]. 2017; 18:501–511. doi: https://doi.org/gt5kh4
Medić B, Stojanović M, Rovčanin B, Kekić D, Škodrić SR, Jovanović GB, Vujović KS, Divac N, Stojanović R, Radenković M, Prostan M. Pioglitazone attenuates kidney injury in an experimental model of gentamicin–induced nephrotoxicity in rats. Sci. Rep. [Internet]. 2019; 9:13689. doi: https://doi.org/gmq9z2
Famurewa AC, Maduagwuna EK, Folawiyo AM, Besong EE, Eteudo AN, Famurewa OA, Fidelis EE. Antioxidant, anti‐inflammatory, and antiapoptotic effects of virgin coconut oil against antibiotic drug gentamicin‐induced nephrotoxicity via the suppression of oxidative stress and modulation of iNOS/NF‐ĸB/caspase‐3 signaling pathway in Wistar rats. J. Food Biochem. [Internet]. 2020; 44(1):e13100. doi: https://doi.org/gmdxg4
Ince S, Kucukkurt I, Demirel HH, Arslan–Acaroz D, Varol N. Boron, a Trace Mineral, Alleviates Gentamicin–Induced Nephrotoxicity in Rats. Biol. Trace Elem. Res. [Internet]. 2020; 195(2):515–524. doi: https://doi.org/gt5kh5
Galaly SR, Ahmed OM, Mahmoud AM. Thymoquinone and Curcumin Prevent Gentamicin–Induced Liver Injury by Attenuating Oxidative Stress, Inflammation and Apoptosis. J. Physiol. Pharmacol. [Internet]. 2014 [cited 12 Jan. 2024]; 65(6):823–832. Available in: https://goo.su/OJFZ0B7
Arjinajarn P, Chueakula N, Pongchaidecha A, Jaikumkao K, Chatsudthipong V, Mahatheeranont S, Orranuch N, Nipon C, Anusorn L. Anthocyanin–rich Riceberry bran extract attenuates gentamicin–induced hepatotoxicity by reducing oxidative stress, inflammation and apoptosis in rats. Biomed. Pharmacother. [Internet]. 2017; 92:412–420. doi: https://doi.org/gbt6bb
Khaksari M, Esmaili S, Abedloo R, Khastar H. Palmatine ameliorates nephrotoxicity and hepatotoxicity induced by gentamicin in rats. Arch. Physiol. Biochem. [Internet]. 2021; 127(3):273–278. doi: https://doi.org/gt5kh6
Ali FEM, Hassanein EHM, Bakr AG, El–Shoura EAM, El–Gamal DA, Mahmoud AR, Abd–Elhamid TH. Ursodeoxycholic acid abrogates gentamicin–induced hepatotoxicity in rats: Role of NF–κB–p65/TNF–α, Bax/Bcl–xl/Caspase–3, and eNOS/iNOS pathways. Life Sci. [Internet]. 2020; 254:117760. doi: https://doi.org/gt5kh7
Adil M, Kandhare AD, Dalvi G, Ghosh P, Venkata S, Raygude KS, Bondhankar SL. Ameliorative effect of berberine against gentamicin–induced nephrotoxicity in rats via attenuation of oxidative stress, inflammation, apoptosis and mitochondrial dysfunction. Ren. Fail. [Internet]. 2016; 38(6):996–1006. doi: https://doi.org/gmq9xj
Helal MG, Zaki MMAF, Said E. Nephroprotective effect of saxagliptin against gentamicin–induced nephrotoxicity, emphasis on anti–oxidant, anti–inflammatory and anti–apoptic effects. Life Sci. [Internet]. 2018; 208:64–71. doi: https://doi.org/gd6wcn
Kalmar B, Greensmith L. Induction of heat shock proteins for protection against oxidative stress. Adv. Drug. Deliv. Rev. [Internet]. 2009; 61(4):310–318. doi: https://doi.org/cwkf8q
Chebotareva N, Bobkova I, Shilov E. Heat shock proteins and kidney disease: perspectives of HSP therapy. Cell Stress Chaperones [Internet]. 2017; 22(3):319–343. doi: https://doi.org/f98bsc
Ikwegbue PC, Masamba P, Oyinloye BE, Kappo AP. Roles of Heat Shock Proteins in Apoptosis, Oxidative Stress, Human Inflammatory Diseases, and Cancer. Pharmaceuticals [Internet]. 2018; 11(1):2. doi: https://doi.org/gt5kh8
Gouda SAA, Aboulhoda BE, Abdelwahed OM, Abdallah H, Rashed L, Hussein RE, Sharawy N. Low–intensity pulsed ultrasound (LIPUS) switched macrophage into M2 phenotype and mitigated necroptosis and increased HSP 70 in gentamicin–induced nephrotoxicity. Life Sci. [Internet]. 2023; 314:121338. doi: https://doi.org/gt5kh9
Le TA, Hiba T, Chaudhari D, Preston AN, Palowsky ZR, Ahmadzadeh S, Shekoohi S, Cornett EM, Kaye AD. Aminoglycoside–Related Nephrotoxicity and Ototoxicity in Clinical Practice: A Review of Pathophysiological Mechanism and Treatment Options. Adv. Ther. [Internet]. 2023; 40(4):1357–1365. doi: https://doi.org/gtn572
Kalkan Y, Kapakin KAT, Kara A, Atabay T, Karadeniz A, Simsek N, Karakus E, Can I, Yildirim S, Ozkanlar S, Sengul E. Protective effect of Panax ginseng against serum biochemical changes and apoptosis in kidney of rats treated with gentamicin sulphate. J. Mol. Histol. [Internet]. 2012; 43:603–613. doi: https://doi.org/gt5kjb
Mohamadi Yarijani Z, Najafi H, Shackebaei D, Madani SH, Modarresi M, Jassemi SV. Amelioration of renal and hepatic function, oxidative stress, inflammation and histopathologic damages by Malva sylvestris extract in gentamicin induced renal toxicity. Biomed. Pharmacother. [Internet]. 2019; 112:108635. doi: https://doi.org/gt5kjc
Akaberi M, Sahebkar A, Azizi N, Emami SA. Everlasting flowers: Phytochemistry and pharmacology of the genus Helichrysum. Ind Crops Prod. [Internet]. 2019;138:111471. doi: https://doi.org/gt5kjd
Jovanović M, Drinić Z, Bigović D, Alimpić–Aradski A, Duletić–Laušević S, Šavikin K. In vitro and in silico predictions of antineurodegenerative properties of Helichrysum plicatum flower extract. Lekovite Sirovine. [Internet]. 2020; 40(1):45–51. doi: https://doi.org/gt5kjf
Vujić B, Vidaković V, Jadranin M, Novaković I, Trifunović S, Tešević V, Mandić B. Composition, Antioxidant Potential, and Antimicrobial Activity of Helichrysum plicatum DC. Plants [Internet]. 2020; 9(3):337. doi: https://doi.org/gt5kjg
Güneş A, Kordali Ş, Turan M, Usanmaz Bozhüyük A. Determination of antioxidant enzyme activity and phenolic contents of some species of the Asteraceae family from medicanal plants. Ind. Crops Prod. [Internet]. 2019; 137:208–213. doi: https://doi.org/gt5kjh
Iskender H, Dokumacioglu E, Terim Kapakin KA, Bolat I, Mokhtare B, Hayirli A, Yenice G. Effect of Oleanolic acid administration on hepatic AMPK, SIRT–1, IL–6 and NF–κB levels in experimental diabetes. J. Diabetes Metab. Disord. [Internet]. 2023; 22:581–590. doi: https://doi.org/gt5kjj
Kapakin KAT, Sahin M, Buyuk F, Kapakin S, Gursan N, Saglam YS. Respiratory tract infection induced experimentally by Ornithobacterium rhinotracheale in quails: effects on heat shock proteins and apoptosis. Rev. Méd. Vét. 2013: 164(3):132–140.
Dokumacioglu E, Iskender H, Yenice G, Kapakin KAT, Sevim C, Hayirli A, Saral S, Comakli S. Effects of astaxanthin on biochemical and histopathological parameters related to oxidative stress on testes of rats on high fructose regime. Andrologia [Internet]. 2018; 50(7):e13042. doi: https://doi.org/gmt9jz
Jaikumkao K, Pongchaidecha A, Thongnak L, Wanchai K, Arjinajarn P, Chatsudthipong V, Chattipakorn N, Lungkaphin A. Amelioration of Renal Inflammation, Endoplasmic Reticulum Stress and Apoptosis Underlies the Protective Effect of Low Dosage of Atorvastatin in Gentamicin–Induced Nephrotoxicity. Plos One [Internet]. 2016; 11(10):e0164528. doi: https://doi.org/f9rt92
Fielding CA, McLoughlin RM, McLeod L, Colmont CS, Najdovska M, Grail D, Ernst A, Jones SA, Topley N, Jenkins BJ. IL–6 Regulates Neutrophil Trafficking during Acute Inflammation via STAT3. J. Immunol. [Internet]. 2008; 181(3):2189–2195. doi: https://doi.org/f3v2xb
Subramanian P, Anandan R, Jayapalan JJ, Hashim OH. Hesperidin protects gentamicin–induced nephrotoxicity via Nrf2/HO–1 signaling and inhibits inflammation mediated by NF–κB in rats. J. Funct. Foods [Internet]. 2015; 13:89–99. doi: https://doi.org/f64px2
Muthuraman A, Singla SK, Rana A, Singh A, Sood S. Reno–protective Role of Flunarizine (Mitochondrial Permeability Transition Pore Inactivator) against Gentamicin induced Nephrotoxicity in rats. Yakugaku Zasshi [Internet]. 2011; 131(3):437–443. doi: https://doi.org/b7n52p
Balakumar P, WitnessKoe WE, Gan YS, JemayPuah SM, Kuganesswari S, Prajapati SK, Varatharajan R, Jayachristy SA, Sundram K, Bahari MB. Effects of pre and post–treatments with dipyridamole in gentamicin–induced acute nephrotoxicity in the rat. Regul. Toxicol. Pharmacol. [Internet]. 2017; 84:35–44. doi: https://doi.org/gf4557
Aboubakr M, Abdelazem AM. Hepatoprotective effect of aqueous extract of cardamom against gentamicin induced hepatic damage in rats. Int. J. Basic Appl. Sci. [Internet]. 2016; 5(1):1–4. doi: https://doi.org/gt5kjk
Antunes Viegas D, Palmeira–de–Oliveira A, Salgueiro L, Martinez–de–Oliveira J, Palmeira–de–Oliveira R. Helichrysum italicum: From traditional use to scientific data. J. Ethnopharmacol. [Internet]. 2014; 151(1):54–65. doi: https://doi.org/f5rt8q
Kim YJ, Seok JH, Cheung W, Lee SN, Jang HH, Bae S, Le H. Effects of Helichrysum bracteatum flower extracts on UVB irradiation–induced inflammatory biomarker expression. Biomed. Dermatol. [Internet]. 2019; 3(1):9. doi: https://doi.org/gt5kjm
De Canha MN, Komarnytsky S, Langhansova L, Lall N. Exploring the Anti–Acne Potential of Impepho [Helichrysum odoratissimum (L.) Sweet] to Combat Cutibacterium acnes Virulence. Front Pharmacol. [Internet]. 2020; 10:1559. doi: https://doi.org/gt5kjn
Kherbache A, Senator A, Laouicha S, Al–Zoubi RM, Bouriche H. Phytochemical analysis, antioxidant and anti–inflammatory activities of Helichrysum stoechas (L.) Moench extracts. Biocatal. Agric. Biotechnol. [Internet]. 2020; 29:101826. doi: https://doi.org/gt5kjp
Archana PR, Aleena J, Pragna P, Vidya MK, Abdul Niyas PA, Bagath M, Krishnan G, Manimaran A, Beena V, Kurien EK, Veerasamy S, Bhatta R. Role of Heat Shock Proteins in Livestock Adaptation to Heat Stress. J. Dairy Vet. Anim. Res. [Internet]. 2017; 5(1):13-19 doi: https://doi.org/gt5kjq
Cheng M, Razzaque MS, Nazneen A, Taguchi T. Expression of the heat shock protein 47 in gentamicin‐treated rat kidneys. Int. J. Exp. Pathol. [Internet]. 1998; 79(3):125–132. doi: https://doi.org/dsgw28
Wang Z, Liu L, Mei Q, Liu L, Ran Y, Zhang R. Increased Expression of Heat Shock Protein 72 Protects Renal Proximal Tubular Cells from Gentamicin–induced Injury. J. Korean Med. Sci. [Internet]. 2006; 21(5):904-910. doi: https://doi.org/b8gcfh
Ohtani H, Wakui H, Komatsuda A, Satoh K, Miura AB, Itoh H, Tashima Y. Induction and intracellular localization of 90–kilodalton heat–shock protein in rat kidneys with acute gentamicin nephropathy. Lab. Invest. 1995; 72(2):161–165. PMID: 7853850.
Yamamoto S, Nakano S, Owari K, Fuziwara K, Ogawa N, Otaka M, Tamaki K, Watanabe S, Komatsuda A, Wakui H, Sawada K, Kubota H, Itoh H. Gentamicin inhibits HSP70‐assisted protein folding by interfering with substrate recognition. FEBS Lett. [Internet]. 2010; 584(4):645–651. doi: https://doi.org/fb45f7
Abdelrahman RS, Abdelmageed ME. Renoprotective effect of celecoxib against gentamicin–induced nephrotoxicity through suppressing NFκB and caspase–3 signaling pathways in rats. Chem. Biol. Interact. [Internet]. 2020; 315:108863. doi: https://doi.org/gt5kjr
Abd–Elhamid TH, Elgamal DA, Ali SS, Ali FEM, Hassanein EHM, El–Shoura EAM, Hemeida RAM. Reno–protective effects of ursodeoxycholic acid against gentamicin–induced nephrotoxicity through modulation of NF–κB, eNOS and caspase–3 expressions. Cell Tissue Res. [Internet]. 2018; 374(2):367–387. doi: https://doi.org/gfjhjs
Christo JS, Rodrigues AM, Mouro MG, Cenedeze MA, Simões MJ, Schor N, Higa EMS. Nitric oxide (NO) is associated with gentamicin (GENTA) nephrotoxicity and the renal function recovery after suspension of GENTA treatment in rats. Nitric Oxide [Internet]. 2011; 24(2):77–83. doi: https://doi.org/bk64f3
Dawood AF, Maarouf A, Alzamil NM, Momenah MA, Shati AA, Bayoumy NM, Kamar SS, Haidara MA, ShamsEldeen AM, Yassin HZ, Hewett PW, Al-Ani B. Metformin Is Associated with the Inhibition of Renal Artery AT1R/ET–1/iNOS Axis in a Rat Model of Diabetic Nephropathy with Suppression of Inflammation and Oxidative Stress and Kidney Injury. Biomedicines [Internet]. 2022; 10(7):1644. doi: https://doi.org/gt5kjs
Antar S, Al–Karmalawy AA, Mourad A, Mourad M, Elbadry M, Saber S, Khodir A. Protective Effects of Mirazid on Gentamicin–induced Nephrotoxicity in Rats through Antioxidant, Anti–inflammatory, JNK1/iNOS, and Apoptotic Pathways; Novel Mechanistic Insights. Pharm. Sci. [Internet]. 2022; 28(4):525–540. doi: https://doi.org/gt5kjt
Aslan M, Deliorman Orhan D, Orhan N, Sezik E, Yesilada E. In vivo antidiabetic and antioxidant potential of Helichrysum plicatum ssp. Pllicatum capitulums in streptozotocin–induced–diabetic rats. J. Ethnopharmacol. [Internet]. 2007; 109(1):54–59. doi: https://doi.org/bjfw45

Copyright (c) 2024 Ismail Bolat, Kubra Asena Terim–Kapakin, Betul Apaydin Yildirim, Esra Manavoğlu Kirman

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.